Percolation on nonamenable products at the uniqueness threshold
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 3, page 395-406
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPeres, Yuval. "Percolation on nonamenable products at the uniqueness threshold." Annales de l'I.H.P. Probabilités et statistiques 36.3 (2000): 395-406. <http://eudml.org/doc/77664>.
@article{Peres2000,
author = {Peres, Yuval},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {percolation; quasi-transitive graphs; amenability},
language = {eng},
number = {3},
pages = {395-406},
publisher = {Gauthier-Villars},
title = {Percolation on nonamenable products at the uniqueness threshold},
url = {http://eudml.org/doc/77664},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Peres, Yuval
TI - Percolation on nonamenable products at the uniqueness threshold
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 3
SP - 395
EP - 406
LA - eng
KW - percolation; quasi-transitive graphs; amenability
UR - http://eudml.org/doc/77664
ER -
References
top- [1] Adams S., Lyons R., Amenability, Kazhdan's property and percolation for trees, groups and equivalence relations, Israel J. Math.75 (1991) 341-370. Zbl0790.43001MR1164598
- [2] Benjamini I., Lyons R., Peres Y., Schramm O., Group-invariant percolation on graphs, Geom. Funct. Anal.9 (1999) 29-66. Zbl0924.43002MR1675890
- [3] Benjamini I., Lyons R., Peres Y., Schramm O., Critical percolation on any nonamenable group has no infinite clusters, Ann. Probab. (1999), to appear. Zbl0961.60015MR1733151
- [4] Benjamini I., Schramm O., Percolation beyond Zd, many questions and a few answers, Electronic Commun. Probab.1 (8) (1996) 71-82. Zbl0890.60091MR1423907
- [5] Burton R.M., Keane M., Density and uniqueness in percolation, Comm. Math. Phys.121 (1989) 501-505. Zbl0662.60113MR990777
- [6] Gandolfi A., Keane M.S., Newman C.M., Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses, Probab. Theory Related Fields92 (1992) 511-527. Zbl0767.60098MR1169017
- [7] Grimmett G.R., Newman C.M., Percolation in oo + 1 dimensions, in: Grimmett G.R., Welsh D.J.A. (Eds.), Disorder in Physical Systems, Clarendon Press, Oxford, 1990, pp. 167-190. Zbl0721.60121MR1064560
- [8] Häggström O., Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab.25 (1997) 1423-1436. Zbl0895.60098MR1457624
- [9] Häggström O., Peres Y., Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Related Fields113 (1999) 273-285. Zbl0921.60091MR1676835
- [10] Häggström O., Peres Y., Schonmann R.H., Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness, in: Bramson M., Durrett R. (Eds.), Perplexing Probability Problems: Papers in Honor of Harry Kesten, Birkhäuser, 1999, pp. 69-90. Zbl0948.60098MR1703125
- [11] Lalley S.P., Percolation on Fuchsian groups, Ann. Inst. H. PoincaréProbab. Statist.34 (1998) 151-177. Zbl0911.60084MR1614583
- [12] Liggett T.M., Multiple transition points for the contact process on the binary tree, Ann. Probab.24 (1996) 1675-1710. Zbl0871.60087MR1415225
- [13] Lyons R., Schramm O., Indistinguishability of percolation clusters, Ann. Probab. (1999), to appear. Zbl0960.60013MR1742889
- [14] Paterson A.L.T., Amenability, American Mathematical Soc., Providence, 1988. Zbl0648.43001MR961261
- [15] Pemantle R., The contact process on trees, Ann. Probab.20 (1992) 2089-2116. Zbl0762.60098MR1188054
- [16] Pemantle R., Peres Y., Nonamenable products are not treeable, Preprint, 1999, Israel J. Math., to appear. Zbl0961.43002MR1776080
- [17] Salvatori M., On the norms of group-invariant transition operators on graphs, J. Theor. Probab.5 (1992) 563-576. Zbl0751.60068MR1176438
- [18] Salzano M., Schonmann R.H., A new proof that for the contact process on homogeneous trees local survival implies complete convergence, Ann. Probab.26 (1998) 1251-1258. Zbl0937.60094MR1640345
- [19] Schonmann R.H., Stability of infinite clusters in supercritical percolation, Probab. Theory Related Fields113 (1999) 287-300. Zbl0921.60092MR1676831
- [20] Schonmann R.H., Percolation in ∞ + 1 dimensions at the uniqueness threshold, in: Bramson M., Durrett R. (Eds.), Perplexing Probability Problems: Papers in Honor of H. Kesten, Birkhäuser, 1999, pp. 53-67. Zbl0948.60099MR1703124
- [21] Zhang Y., The complete convergence theorem of the contact process on trees, Ann. Probab.24 (1996) 1408-1443. Zbl0876.60092MR1411500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.