Percolation on nonamenable products at the uniqueness threshold

Yuval Peres

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 3, page 395-406
  • ISSN: 0246-0203

How to cite

top

Peres, Yuval. "Percolation on nonamenable products at the uniqueness threshold." Annales de l'I.H.P. Probabilités et statistiques 36.3 (2000): 395-406. <http://eudml.org/doc/77664>.

@article{Peres2000,
author = {Peres, Yuval},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {percolation; quasi-transitive graphs; amenability},
language = {eng},
number = {3},
pages = {395-406},
publisher = {Gauthier-Villars},
title = {Percolation on nonamenable products at the uniqueness threshold},
url = {http://eudml.org/doc/77664},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Peres, Yuval
TI - Percolation on nonamenable products at the uniqueness threshold
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 3
SP - 395
EP - 406
LA - eng
KW - percolation; quasi-transitive graphs; amenability
UR - http://eudml.org/doc/77664
ER -

References

top
  1. [1] Adams S., Lyons R., Amenability, Kazhdan's property and percolation for trees, groups and equivalence relations, Israel J. Math.75 (1991) 341-370. Zbl0790.43001MR1164598
  2. [2] Benjamini I., Lyons R., Peres Y., Schramm O., Group-invariant percolation on graphs, Geom. Funct. Anal.9 (1999) 29-66. Zbl0924.43002MR1675890
  3. [3] Benjamini I., Lyons R., Peres Y., Schramm O., Critical percolation on any nonamenable group has no infinite clusters, Ann. Probab. (1999), to appear. Zbl0961.60015MR1733151
  4. [4] Benjamini I., Schramm O., Percolation beyond Zd, many questions and a few answers, Electronic Commun. Probab.1 (8) (1996) 71-82. Zbl0890.60091MR1423907
  5. [5] Burton R.M., Keane M., Density and uniqueness in percolation, Comm. Math. Phys.121 (1989) 501-505. Zbl0662.60113MR990777
  6. [6] Gandolfi A., Keane M.S., Newman C.M., Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses, Probab. Theory Related Fields92 (1992) 511-527. Zbl0767.60098MR1169017
  7. [7] Grimmett G.R., Newman C.M., Percolation in oo + 1 dimensions, in: Grimmett G.R., Welsh D.J.A. (Eds.), Disorder in Physical Systems, Clarendon Press, Oxford, 1990, pp. 167-190. Zbl0721.60121MR1064560
  8. [8] Häggström O., Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab.25 (1997) 1423-1436. Zbl0895.60098MR1457624
  9. [9] Häggström O., Peres Y., Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Related Fields113 (1999) 273-285. Zbl0921.60091MR1676835
  10. [10] Häggström O., Peres Y., Schonmann R.H., Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness, in: Bramson M., Durrett R. (Eds.), Perplexing Probability Problems: Papers in Honor of Harry Kesten, Birkhäuser, 1999, pp. 69-90. Zbl0948.60098MR1703125
  11. [11] Lalley S.P., Percolation on Fuchsian groups, Ann. Inst. H. PoincaréProbab. Statist.34 (1998) 151-177. Zbl0911.60084MR1614583
  12. [12] Liggett T.M., Multiple transition points for the contact process on the binary tree, Ann. Probab.24 (1996) 1675-1710. Zbl0871.60087MR1415225
  13. [13] Lyons R., Schramm O., Indistinguishability of percolation clusters, Ann. Probab. (1999), to appear. Zbl0960.60013MR1742889
  14. [14] Paterson A.L.T., Amenability, American Mathematical Soc., Providence, 1988. Zbl0648.43001MR961261
  15. [15] Pemantle R., The contact process on trees, Ann. Probab.20 (1992) 2089-2116. Zbl0762.60098MR1188054
  16. [16] Pemantle R., Peres Y., Nonamenable products are not treeable, Preprint, 1999, Israel J. Math., to appear. Zbl0961.43002MR1776080
  17. [17] Salvatori M., On the norms of group-invariant transition operators on graphs, J. Theor. Probab.5 (1992) 563-576. Zbl0751.60068MR1176438
  18. [18] Salzano M., Schonmann R.H., A new proof that for the contact process on homogeneous trees local survival implies complete convergence, Ann. Probab.26 (1998) 1251-1258. Zbl0937.60094MR1640345
  19. [19] Schonmann R.H., Stability of infinite clusters in supercritical percolation, Probab. Theory Related Fields113 (1999) 287-300. Zbl0921.60092MR1676831
  20. [20] Schonmann R.H., Percolation in ∞ + 1 dimensions at the uniqueness threshold, in: Bramson M., Durrett R. (Eds.), Perplexing Probability Problems: Papers in Honor of H. Kesten, Birkhäuser, 1999, pp. 53-67. Zbl0948.60099MR1703124
  21. [21] Zhang Y., The complete convergence theorem of the contact process on trees, Ann. Probab.24 (1996) 1408-1443. Zbl0876.60092MR1411500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.