L p adaptive density estimation in a β mixing framework

Karine Tribouley; Gabrielle Viennet

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 2, page 179-208
  • ISSN: 0246-0203

How to cite

top

Tribouley, Karine, and Viennet, Gabrielle. "$L_p$ adaptive density estimation in a $\beta $ mixing framework." Annales de l'I.H.P. Probabilités et statistiques 34.2 (1998): 179-208. <http://eudml.org/doc/77599>.

@article{Tribouley1998,
author = {Tribouley, Karine, Viennet, Gabrielle},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {beta-mixing; adaptive estimators},
language = {eng},
number = {2},
pages = {179-208},
publisher = {Gauthier-Villars},
title = {$L_p$ adaptive density estimation in a $\beta $ mixing framework},
url = {http://eudml.org/doc/77599},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Tribouley, Karine
AU - Viennet, Gabrielle
TI - $L_p$ adaptive density estimation in a $\beta $ mixing framework
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 2
SP - 179
EP - 208
LA - eng
KW - beta-mixing; adaptive estimators
UR - http://eudml.org/doc/77599
ER -

References

top
  1. [1] P. Ango Nze and P. Doukhan, Functional estimation for time series : a general approach, Prépublication, Université Paris Sud, France, Vol. 93-43, 1993. 
  2. [2] H.C.P. Berbee, Random walks with stationary increments and renewal theory, Cent. Math. Tracts, Amsterdam, 1979. Zbl0443.60083MR547109
  3. [3] L. Birgé and P. Massart, Rates of convergence for minimum contrast estimators, Theor. Probab. Appl., Vol. 97, 1993, pp. 113-150. Zbl0805.62037MR1240719
  4. [4] L. Birgé and P. Massart, From model selection to adaptative estimation, Prépublication, Université Paris Sud, France, Vol. 95-41, 1995. 
  5. [5] R. Dalhaus, M. Neumman and R. von Sachs, Nonlinear wavelet estimation of time varying autoregressive processes, WIAS, Vol. 159, 1995. 
  6. [6] I. Daubechies, Orthogonal bases of compactly supported wavelets, Comm. in Pure and Applied Math., Vol. 41, 1988, pp 906-996. Zbl0644.42026MR951745
  7. [7] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding, Annals of Stat., Vol. 24, 1996, pp. 508-539. Zbl0860.62032MR1394974
  8. [8] P. Doukhan, Mixing : properties and examples, Lecture Notes in Statistics, Springer Verlag, Vol. 72, 1994. Zbl0801.60027MR1312160
  9. [9] P. Doukhan, P. Massart and E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. Henri Poincaré, Probab. Stat., Vol. 30, 1994, pp. 63-82. Zbl0790.60037MR1262892
  10. [10] S.Y. Efroimovitch, Nonparametric estimation of a density of unknown smoothness, Theory Prob. Appl, Vol. 30, 1985, pp. 557-661. Zbl0593.62034
  11. [11] S.Y. Efroimovich and M.S. Pinsker, Learning algorithm for nonparametric filtering, Automat. Remote Control, Vol. 11, 1984, pp. 1434-1440. Zbl0637.93069
  12. [12] M. Hoffmann, On adaptive estimation in nonlinear AR(1) models, 1997 (Submitted). 
  13. [13] G. Kerkyacharian and D. Picard, Density estimation in Besov Spaces, Statistics and Probability Letters, Vol. 13, 1992a pp. 15-24. Zbl0749.62026MR1147634
  14. [14] G. Kerkyacharian, D. Picard and K. Tribouley, Lp adaptative density estimation, Bernoulli, Vol. 2, 1996, pp. 229-247. Zbl0858.62031MR1416864
  15. [15] A.N. Kolmogorov and Y.A. Rozanov, On the strong mixing conditions for stationary gaussian sequences, Theor. Probab. Appl., Vol. 5, 1960, pp. 204-207. Zbl0106.12005
  16. [16] M. Ledoux and M. Talagrand, Probability in Banach spaces, A series of Modern Surveys in Mathematics, 1990, Springer, New York. Zbl0748.60004MR1102015
  17. [17] Y. Meyer, Ondelettes, Paris, 1990, Hermann. Zbl0694.41037MR1085487
  18. [18] A.S. Nemirovskii, Nonparametric estimation of smooth regression functions, J. Comput. Syst. Sci., Vol. 23, 1986, pp. 1-11. Zbl0604.62033MR844292
  19. [19] H.P. Rosenthal, On the subspace of Lp, p &gt; 2, spanned by sequences of independent random variables, Israel J. Math., Vol. 8, 1970, pp. 273-303. Zbl0213.19303MR271721
  20. [20] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986. Zbl0617.62042MR848134
  21. [21] M. Talagrand, Sharper bounds for gaussian and empirical processes, Ann. Probab., Vol. 22, 1994, pp. 28-76. Zbl0798.60051MR1258865
  22. [22] M. Talagrand, New concentration inequalities in product spaces, Technical Report, Universite Paris VI, Ohio State University, 1995. MR1419006
  23. [23] G. Viennet, Inequalities for absolutely regular sequences: application to density estimation, Probab. Th. Rel. Fields, Vol. 107, 1997, pp 467-492. Zbl0933.62029MR1440142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.