Rates of convergence to the local time of a diffusion

Jean Jacod

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 4, page 505-544
  • ISSN: 0246-0203

How to cite

top

Jacod, Jean. "Rates of convergence to the local time of a diffusion." Annales de l'I.H.P. Probabilités et statistiques 34.4 (1998): 505-544. <http://eudml.org/doc/77611>.

@article{Jacod1998,
author = {Jacod, Jean},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {local time; diffusion process; functional central limit theorem; Brownian motion},
language = {eng},
number = {4},
pages = {505-544},
publisher = {Gauthier-Villars},
title = {Rates of convergence to the local time of a diffusion},
url = {http://eudml.org/doc/77611},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Jacod, Jean
TI - Rates of convergence to the local time of a diffusion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 4
SP - 505
EP - 544
LA - eng
KW - local time; diffusion process; functional central limit theorem; Brownian motion
UR - http://eudml.org/doc/77611
ER -

References

top
  1. [1] D.J. Aldous, G.K. Eagleson, On mixing and stability of limit theorems, Ann. Proba., Vol. 6, 1978, pp. 325-331. Zbl0376.60026MR517416
  2. [2] D. Aldous, Stopping times and tightness II., Ann. Probab., Vol. 17, 1989, pp. 586-593. Zbl0686.60036MR985380
  3. [3] J.M. Azaïs, Approximation des trajectoires et temps local des diffusions, An. Inst. H. Poincaré, Vol. 25, 1989, pp. 175-194. Zbl0674.60032MR1001025
  4. [4] A.N. Borodin, On the character of convergence to Brownian local time, Probab. Theory and Related Fields, Vol. 72,1986, pp. 251-278. Zbl0572.60079MR836277
  5. [5] A.N. Borodin, Brownian local time, Russian Math. Surveys, Vol. 44, 2, 1989, pp. 1-51. Zbl0705.60064MR998360
  6. [6] D. Florens-Zmirou, On estimating the diffusion coefficient from discrete observations, J. Applied Probab., Vol. 30, 1993, pp. 790-804. Zbl0796.62070MR1242012
  7. [7] J. Jacod, Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent. Sém. Proba XVIII, Lect. Notes in Math. Vol. 1059, 1984, pp. 91-118. Springer Verlag: Berlin. Zbl0539.60033MR770952
  8. [8] J. Jacod and A. Shiryaev, Limit Theorems forStochastic Processes, 1987, Springer-Verlag: Berlin. Zbl0635.60021MR959133
  9. [9] J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law. Sém. Proba. XXXI, Lect. Notes in Math. Vol. 1655, 1997, pp. 232-246, Springer Verlag: Berlin. Zbl0884.60038MR1478732
  10. [10] A. Renyi, On stable sequences of events, Sankya, Ser. A, Vol. 25, 1963, pp. 293-302. Zbl0141.16401MR170385
  11. [11] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer Verlag: Berlin, 1991. Zbl0731.60002MR1083357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.