Rates of convergence to the local time of a diffusion
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 4, page 505-544
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] D.J. Aldous, G.K. Eagleson, On mixing and stability of limit theorems, Ann. Proba., Vol. 6, 1978, pp. 325-331. Zbl0376.60026MR517416
- [2] D. Aldous, Stopping times and tightness II., Ann. Probab., Vol. 17, 1989, pp. 586-593. Zbl0686.60036MR985380
- [3] J.M. Azaïs, Approximation des trajectoires et temps local des diffusions, An. Inst. H. Poincaré, Vol. 25, 1989, pp. 175-194. Zbl0674.60032MR1001025
- [4] A.N. Borodin, On the character of convergence to Brownian local time, Probab. Theory and Related Fields, Vol. 72,1986, pp. 251-278. Zbl0572.60079MR836277
- [5] A.N. Borodin, Brownian local time, Russian Math. Surveys, Vol. 44, 2, 1989, pp. 1-51. Zbl0705.60064MR998360
- [6] D. Florens-Zmirou, On estimating the diffusion coefficient from discrete observations, J. Applied Probab., Vol. 30, 1993, pp. 790-804. Zbl0796.62070MR1242012
- [7] J. Jacod, Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent. Sém. Proba XVIII, Lect. Notes in Math. Vol. 1059, 1984, pp. 91-118. Springer Verlag: Berlin. Zbl0539.60033MR770952
- [8] J. Jacod and A. Shiryaev, Limit Theorems forStochastic Processes, 1987, Springer-Verlag: Berlin. Zbl0635.60021MR959133
- [9] J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law. Sém. Proba. XXXI, Lect. Notes in Math. Vol. 1655, 1997, pp. 232-246, Springer Verlag: Berlin. Zbl0884.60038MR1478732
- [10] A. Renyi, On stable sequences of events, Sankya, Ser. A, Vol. 25, 1963, pp. 293-302. Zbl0141.16401MR170385
- [11] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer Verlag: Berlin, 1991. Zbl0731.60002MR1083357