Smoothing and occupation measures of stochastic processes
- [1] Centro de Matemática, Facultad de Ciencias, Universidad de la República, Calle Iguá 4225. 11400, Montevideo (Uruguay).
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 1, page 125-156
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topWschebor, Mario. "Smoothing and occupation measures of stochastic processes." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 125-156. <http://eudml.org/doc/10029>.
@article{Wschebor2006,
abstract = {This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process, Gaussian processes, continuous semi-martingales and Lévy processes. Some statistical applications are also included in the text.},
affiliation = {Centro de Matemática, Facultad de Ciencias, Universidad de la República, Calle Iguá 4225. 11400, Montevideo (Uruguay).},
author = {Wschebor, Mario},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {1},
pages = {125-156},
publisher = {Université Paul Sabatier, Toulouse},
title = {Smoothing and occupation measures of stochastic processes},
url = {http://eudml.org/doc/10029},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Wschebor, Mario
TI - Smoothing and occupation measures of stochastic processes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 125
EP - 156
AB - This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process, Gaussian processes, continuous semi-martingales and Lévy processes. Some statistical applications are also included in the text.
LA - eng
UR - http://eudml.org/doc/10029
ER -
References
top- J.-M. Azaïs, Conditions for convergence of number of crossings to the local time, Applications to stable processes with independent increments and to Gaussian processes, Probab. Math. Stat. 11 (1990), 19-36 Zbl0744.60091MR1096937
- J.-M. Azaïs, Approximation des trajectoires et temps local des diffusions, Ann. Inst. H. Poincaré, B 25 (1989), 175-194 Zbl0674.60032MR1001025
- J.-M. Azaïs, D. Florens-Szmirou, Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires, Probab. Th. Rel. Fields 76 (1987), 121-132 Zbl0608.60034MR899448
- J.-M. Azaïs, M. Wschebor, Almost sure oscillation of certain random processes, Bernoulli 2 (1996), 257-270 Zbl0885.60018MR1416866
- J.-M. Azaïs, M. Wschebor, Oscillation presque sûre de martingales continues, Séminaires de Probabilités XXXI 1655 (1997), 69-76, AzémaJ.J. Zbl0882.60018MR1478717
- P. Brugière, Estimation de la variance d’un processus de diffusion dans le cas multidimensionel, Comptes R. Acad. Sc. Paris, Sér. I 312 (1991), 999-1004 Zbl0812.60069MR1310678
- A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Institute Math. (1995), AMS, Providence, RI Zbl0985.60035MR1644037
- C. Berzin, J.R. Leon, Weak convergence of the integrated number of level crossings to the local time of the Wiener process, Comptes R. Acad. Sc. Paris, Sér. I 319 (1994), 1311-1316 Zbl0794.60030MR1222362
- C. Berzin, J.R. Leon, J. Ortega, Level crossings and local time for regularized Gaussian processes, Probab. Math. Statist 18 (1998), 39-81 Zbl0855.60001MR1368394
- C. Berzin, M. Wschebor, Approximation du temps local des surfaces gaussiennes, Probab. Th. Rel. Fields 96 (1993), 1-32 Zbl0751.62036MR1113093
- M. Csörgö, P. Révész, Three strong approximations of the local time of a Wiener process and their applications to invariance, Limit Theorems in Probability and Statistics, Vol. I, II (Veszprém, 1982) 36 (1984), 223-254, North-Holland, Amsterdam Zbl0567.60075MR807563
- M. Csörgö, P. Révész, On strong invariance for local time of partial sums, Stoch. Proc. Appl. 20 (1985), 59-84 Zbl0582.60073MR805116
- D. Dacunha-Castelle, D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations, Stochastics 19 (1986), 263-284 Zbl0626.62085MR872464
- D. Florens-Zmirou, On estimating the diffusion coefficient from discrete observations, J. Appl. Prob. 30 (1993), 790-804 Zbl0519.60078MR684210
- B. Fristedt, S.J. Taylor, Constructions of local time for a Markov process, Z. Wahr.verw. gebiete 62 (1983), 73-112 Zbl0796.62070MR1242012
- V. Génon-Catalot, J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré, Prob. Stat. 29 (1993), 119-151 Zbl0770.62070MR1204521
- V. Génon-Catalot, T. Jeantheau, C. Laredo, Limit theorems for discretely observed stochastic volatility models, Bernoulli 4 (1998), 283-304 Zbl0573.60003
- I. Guikhman, A. Skorokhod, Introduction à la théorie des processus aléatoires, (1980), MIR, Moscow Zbl0770.62070MR1204521
- M. Hoffmann, estimation of the diffusion coefficient, Bernoulli 5 (1999), 447-481 Zbl0916.60075MR1653264
- K. Itô, H.P. Mc Kean, Diffusion processes and their sample paths, (1965), Academic Press Zbl0980.62073MR1693608
- N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, (1982), North Holland Zbl0495.60005MR1011252
- J. Jacod, Rates of convergence to the local time of a diffusion, Ann. Inst. H. Poincaré, Prob. Stat. 34 (1998), 505-544 Zbl0911.60055MR199891
- J. Jacod, Non-parametric kernel estimation of the diffusion coefficient of a diffusion, Scand. J. Statist. 27 (2000), 83-96 Zbl0911.60055MR1632849
- I. Karatzas, Brownian motion and stochastic calculus, (1998), Springer-Verlag Zbl0938.62085MR1774045
- R.S. Lipster, A.N. Shiryaev, Statistics of Random Processes, Vol. I, II. 2d ed., (2001), Springer-Verlag Zbl0638.60065
- E. Mordecki, M. Wschebor, Smoothing of paths and weak approximation of the occupation measure of Lévy processes, (2005) Zbl1008.62072
- E. Mordecki, M. Wschebor, Approximation of the occupation measure of Lévy processes, Comptes Rendus de l’Académie des Sciences, Paris, Sér. I 340 (2005), 605-610 Zbl1065.60046MR2138712
- D. Nualart, M. Wschebor, Intégration par parties dans l’espace de Wiener et approximation du temps local, Probab. Th. Rel. Fields 90 (1991), 83-109 Zbl1065.60046MR2138712
- B.L.S Prakasa Rao, Semimartingales and their Statistical Inference, (1999), Chapman & Hall Zbl0727.60052MR1124830
- G. Perera, M. Wschebor, Crossings and occupation measures for a class of semimartingales, Ann. Probab. 26 (1998), 253-266 Zbl0943.60019MR1617048
- G. Perera, M. Wschebor, Inference on the Variance and Smoothing of the Paths of Diffusions, Ann. Inst. H. Poincaré 38 (2002), 1009-1022 Zbl1011.62083MR1955349
- P. Révész, Local time and invariance, Lecture Notes in Math. (1981), 128-145 Zbl0960.62090MR1689166
- M. Wschebor, Régularisation des trajectoires et approximation du temps local, C.R. Acad. Sci. Paris, Sér. I (1984), 209-212 Zbl0456.60029MR655268
- M. Wschebor, Surfaces aléatoires. Mesure géométrique des ensembles de niveau, 1147 (1985), Springer-Verlag, Berlin Zbl0584.60086MR741097
- M. Wschebor, Crossings and local times of one-dimensional diffusions, Pub. Mat. Uruguay (1990), 69-100 Zbl0573.60017MR871689
- M. Wschebor, Sur les accroissements du processus de Wiener, C. R. Acad. Sci. Paris, Sér. I 315 (1992), 1293-1296 Zbl0770.60075
- M. Wschebor, Almost sure weak convergence of the increments of Lévy processes,, Stoch. Proc. Appl. 55 (1995), 253-270 Zbl0770.60075MR1194538
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.