Smoothing and occupation measures of stochastic processes

Mario Wschebor[1]

  • [1] Centro de Matemática, Facultad de Ciencias, Universidad de la República, Calle Iguá 4225. 11400, Montevideo (Uruguay).

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 1, page 125-156
  • ISSN: 0240-2963

Abstract

top
This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process, Gaussian processes, continuous semi-martingales and Lévy processes. Some statistical applications are also included in the text.

How to cite

top

Wschebor, Mario. "Smoothing and occupation measures of stochastic processes." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 125-156. <http://eudml.org/doc/10029>.

@article{Wschebor2006,
abstract = {This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process, Gaussian processes, continuous semi-martingales and Lévy processes. Some statistical applications are also included in the text.},
affiliation = {Centro de Matemática, Facultad de Ciencias, Universidad de la República, Calle Iguá 4225. 11400, Montevideo (Uruguay).},
author = {Wschebor, Mario},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {1},
pages = {125-156},
publisher = {Université Paul Sabatier, Toulouse},
title = {Smoothing and occupation measures of stochastic processes},
url = {http://eudml.org/doc/10029},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Wschebor, Mario
TI - Smoothing and occupation measures of stochastic processes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 125
EP - 156
AB - This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process, Gaussian processes, continuous semi-martingales and Lévy processes. Some statistical applications are also included in the text.
LA - eng
UR - http://eudml.org/doc/10029
ER -

References

top
  1. J.-M. Azaïs, Conditions for convergence of number of crossings to the local time, Applications to stable processes with independent increments and to Gaussian processes, Probab. Math. Stat. 11 (1990), 19-36 Zbl0744.60091MR1096937
  2. J.-M. Azaïs, Approximation des trajectoires et temps local des diffusions, Ann. Inst. H. Poincaré, B 25 (1989), 175-194 Zbl0674.60032MR1001025
  3. J.-M. Azaïs, D. Florens-Szmirou, Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires, Probab. Th. Rel. Fields 76 (1987), 121-132 Zbl0608.60034MR899448
  4. J.-M. Azaïs, M. Wschebor, Almost sure oscillation of certain random processes, Bernoulli 2 (1996), 257-270 Zbl0885.60018MR1416866
  5. J.-M. Azaïs, M. Wschebor, Oscillation presque sûre de martingales continues, Séminaires de Probabilités XXXI 1655 (1997), 69-76, AzémaJ.J. Zbl0882.60018MR1478717
  6. P. Brugière, Estimation de la variance d’un processus de diffusion dans le cas multidimensionel, Comptes R. Acad. Sc. Paris, Sér. I 312 (1991), 999-1004 Zbl0812.60069MR1310678
  7. A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Institute Math. (1995), AMS, Providence, RI Zbl0985.60035MR1644037
  8. C. Berzin, J.R. Leon, Weak convergence of the integrated number of level crossings to the local time of the Wiener process, Comptes R. Acad. Sc. Paris, Sér. I 319 (1994), 1311-1316 Zbl0794.60030MR1222362
  9. C. Berzin, J.R. Leon, J. Ortega, Level crossings and local time for regularized Gaussian processes, Probab. Math. Statist 18 (1998), 39-81 Zbl0855.60001MR1368394
  10. C. Berzin, M. Wschebor, Approximation du temps local des surfaces gaussiennes, Probab. Th. Rel. Fields 96 (1993), 1-32 Zbl0751.62036MR1113093
  11. M. Csörgö, P. Révész, Three strong approximations of the local time of a Wiener process and their applications to invariance, Limit Theorems in Probability and Statistics, Vol. I, II (Veszprém, 1982) 36 (1984), 223-254, North-Holland, Amsterdam Zbl0567.60075MR807563
  12. M. Csörgö, P. Révész, On strong invariance for local time of partial sums, Stoch. Proc. Appl. 20 (1985), 59-84 Zbl0582.60073MR805116
  13. D. Dacunha-Castelle, D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations, Stochastics 19 (1986), 263-284 Zbl0626.62085MR872464
  14. D. Florens-Zmirou, On estimating the diffusion coefficient from discrete observations, J. Appl. Prob. 30 (1993), 790-804 Zbl0519.60078MR684210
  15. B. Fristedt, S.J. Taylor, Constructions of local time for a Markov process, Z. Wahr.verw. gebiete 62 (1983), 73-112 Zbl0796.62070MR1242012
  16. V. Génon-Catalot, J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré, Prob. Stat. 29 (1993), 119-151 Zbl0770.62070MR1204521
  17. V. Génon-Catalot, T. Jeantheau, C. Laredo, Limit theorems for discretely observed stochastic volatility models, Bernoulli 4 (1998), 283-304 Zbl0573.60003
  18. I. Guikhman, A. Skorokhod, Introduction à la théorie des processus aléatoires, (1980), MIR, Moscow Zbl0770.62070MR1204521
  19. M. Hoffmann, L p estimation of the diffusion coefficient, Bernoulli 5 (1999), 447-481 Zbl0916.60075MR1653264
  20. K. Itô, H.P. Mc Kean, Diffusion processes and their sample paths, (1965), Academic Press Zbl0980.62073MR1693608
  21. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, (1982), North Holland Zbl0495.60005MR1011252
  22. J. Jacod, Rates of convergence to the local time of a diffusion, Ann. Inst. H. Poincaré, Prob. Stat. 34 (1998), 505-544 Zbl0911.60055MR199891
  23. J. Jacod, Non-parametric kernel estimation of the diffusion coefficient of a diffusion, Scand. J. Statist. 27 (2000), 83-96 Zbl0911.60055MR1632849
  24. I. Karatzas, Brownian motion and stochastic calculus, (1998), Springer-Verlag Zbl0938.62085MR1774045
  25. R.S. Lipster, A.N. Shiryaev, Statistics of Random Processes, Vol. I, II. 2d ed., (2001), Springer-Verlag Zbl0638.60065
  26. E. Mordecki, M. Wschebor, Smoothing of paths and weak approximation of the occupation measure of Lévy processes, (2005) Zbl1008.62072
  27. E. Mordecki, M. Wschebor, Approximation of the occupation measure of Lévy processes, Comptes Rendus de l’Académie des Sciences, Paris, Sér. I 340 (2005), 605-610 Zbl1065.60046MR2138712
  28. D. Nualart, M. Wschebor, Intégration par parties dans l’espace de Wiener et approximation du temps local, Probab. Th. Rel. Fields 90 (1991), 83-109 Zbl1065.60046MR2138712
  29. B.L.S Prakasa Rao, Semimartingales and their Statistical Inference, (1999), Chapman & Hall Zbl0727.60052MR1124830
  30. G. Perera, M. Wschebor, Crossings and occupation measures for a class of semimartingales, Ann. Probab. 26 (1998), 253-266 Zbl0943.60019MR1617048
  31. G. Perera, M. Wschebor, Inference on the Variance and Smoothing of the Paths of Diffusions, Ann. Inst. H. Poincaré 38 (2002), 1009-1022 Zbl1011.62083MR1955349
  32. P. Révész, Local time and invariance, Lecture Notes in Math. (1981), 128-145 Zbl0960.62090MR1689166
  33. M. Wschebor, Régularisation des trajectoires et approximation du temps local, C.R. Acad. Sci. Paris, Sér. I (1984), 209-212 Zbl0456.60029MR655268
  34. M. Wschebor, Surfaces aléatoires. Mesure géométrique des ensembles de niveau, 1147 (1985), Springer-Verlag, Berlin Zbl0584.60086MR741097
  35. M. Wschebor, Crossings and local times of one-dimensional diffusions, Pub. Mat. Uruguay (1990), 69-100 Zbl0573.60017MR871689
  36. M. Wschebor, Sur les accroissements du processus de Wiener, C. R. Acad. Sci. Paris, Sér. I 315 (1992), 1293-1296 Zbl0770.60075
  37. M. Wschebor, Almost sure weak convergence of the increments of Lévy processes,, Stoch. Proc. Appl. 55 (1995), 253-270 Zbl0770.60075MR1194538

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.