Spectral gap and convex concentration inequalities for birth–death processes

Wei Liu; Yutao Ma

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 1, page 58-69
  • ISSN: 0246-0203

Abstract

top
In this paper, we consider a birth–death process with generator and reversible invariant probabilityπ. Given an increasing function ρ and the associated Lipschitz norm ‖⋅‖Lip(ρ), we find an explicit formula for ( - ) - 1 Lip ( ρ ) . As a typical application, with spectral theory, we revisit one variational formula of M. F. Chen for the spectral gap of inL2(π). Moreover, by Lyons–Zheng’s forward-backward martingale decomposition theorem, we get convex concentration inequalities for additive functionals of birth–death processes.

How to cite

top

Liu, Wei, and Ma, Yutao. "Spectral gap and convex concentration inequalities for birth–death processes." Annales de l'I.H.P. Probabilités et statistiques 45.1 (2009): 58-69. <http://eudml.org/doc/78021>.

@article{Liu2009,
abstract = {In this paper, we consider a birth–death process with generator $\mathcal \{L\}$ and reversible invariant probabilityπ. Given an increasing function ρ and the associated Lipschitz norm ‖⋅‖Lip(ρ), we find an explicit formula for $\Vert (-\mathcal \{L\})^\{-1\}\Vert _\{\operatorname\{Lip\}(\rho )\}$. As a typical application, with spectral theory, we revisit one variational formula of M. F. Chen for the spectral gap of $\mathcal \{L\}$ inL2(π). Moreover, by Lyons–Zheng’s forward-backward martingale decomposition theorem, we get convex concentration inequalities for additive functionals of birth–death processes.},
author = {Liu, Wei, Ma, Yutao},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Birth–death process; spectral gap; Lipschitz function; Poisson equation; convex concentration inequality; birth-death process},
language = {eng},
number = {1},
pages = {58-69},
publisher = {Gauthier-Villars},
title = {Spectral gap and convex concentration inequalities for birth–death processes},
url = {http://eudml.org/doc/78021},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Liu, Wei
AU - Ma, Yutao
TI - Spectral gap and convex concentration inequalities for birth–death processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 1
SP - 58
EP - 69
AB - In this paper, we consider a birth–death process with generator $\mathcal {L}$ and reversible invariant probabilityπ. Given an increasing function ρ and the associated Lipschitz norm ‖⋅‖Lip(ρ), we find an explicit formula for $\Vert (-\mathcal {L})^{-1}\Vert _{\operatorname{Lip}(\rho )}$. As a typical application, with spectral theory, we revisit one variational formula of M. F. Chen for the spectral gap of $\mathcal {L}$ inL2(π). Moreover, by Lyons–Zheng’s forward-backward martingale decomposition theorem, we get convex concentration inequalities for additive functionals of birth–death processes.
LA - eng
KW - Birth–death process; spectral gap; Lipschitz function; Poisson equation; convex concentration inequality; birth-death process
UR - http://eudml.org/doc/78021
ER -

References

top
  1. [1] S. G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. Zbl0924.46027MR1682772
  2. [2] M. F. Chen. Estimation of spectral gap for Markov chains. Acta Math. Sin. New Ser. 12 (1996) 337–360. Zbl0867.60038MR1457859
  3. [3] M. F. Chen. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. Sin. (A) 42 (1999) 805–815. Zbl0936.35120MR1738551
  4. [4] M. F. Chen. Explicit bounds of the first eigenvalue. Sci. China (A) 43 (2000) 1051–1059. Zbl1054.60082MR1802148
  5. [5] M. F. Chen. Variational formulas and approximation theorems for the first eigenvalue. Sci. China (A) 44 (2001) 409–418. Zbl1012.34078MR1831443
  6. [6] M. F. Chen. From Markov Chains to Non-equilibrium Particle Systems, 2nd edition. Springer, 2004. Zbl1078.60003MR2091955
  7. [7] M. F. Chen. Eigenvalues, Inequalities and Ergodic Theory. Springer, 2005. Zbl1079.60005MR2105651
  8. [8] M. F. Chen and F. Y. Wang. Application of coupling method to the first eigenvalue on manifold. Sci. Sin. (A) 23 (1993) 1130–1140 (Chinese Edition); 37 (1994) 1–14 (English Edition). Zbl0799.53044MR1308707
  9. [9] M. F. Chen and F. Y. Wang. Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (1997) 1239–1267. Zbl0872.35072MR1401516
  10. [10] H. Djellout and L. M. Wu. Spectral gap of one dimensional diffusions in Lipschitz norm and application to log-Sobolev inequalities for Gibbs measures. Preprint, 2007. 
  11. [11] A. Guillin, C. Léonard, L. M. Wu and N. Yao. Transportation-information inequalities for Markov processes. Preprint, 2007. Zbl1169.60304
  12. [12] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58 (1963) 13–30. Zbl0127.10602MR144363
  13. [13] A. Joulin. A new Poisson-type deviation inequality for Markov jump process with positive Wasserstein curvature. Preprint, 2007. Zbl1202.60136MR2348750
  14. [14] T. Klein, Y. T. Ma and N. Privault. Convex concentration inequalities and forward/backward stochastic calculus. Electron. J. Probab. 11 (2006) 486–512. Zbl1112.60034MR2242653
  15. [15] T. J. Lyons and W. A. Zheng. A crossing estimate for the canonical process on a Dirichlet space and a tightness result. Astérique 157–158 (1988) 249–271. Zbl0654.60059
  16. [16] Y. T. Ma. Grandes déviations et concentration convexe en temps continu et discret. PhD thesis, Université de La Rochelle (France) et Université de Wuhan (Chine), 2006. Available at http://perso.univ-lr.fr/yma/thesis.pdf. 
  17. [17] L. Miclo. An exemple of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5 (1999) 319–330. Zbl0942.60081MR1710983
  18. [18] Z. K. Wang and X. Q. Yang. Birth–Death Processes and Markov Chains. Academic Press of China, Beijing, 2005 (in Chinese). Zbl0773.60065
  19. [19] L. M. Wu. Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23 (1995) 420–445. Zbl0828.60017MR1330777
  20. [20] L. M. Wu. Forward–backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 121–141. Zbl0936.60037MR1678517
  21. [21] L. M. Wu. Essential spectral radius for Markov semigroups (I): discrete time case. Probab. Theory Related Fields 128 (2004) 255–321. Zbl1056.60068MR2031227
  22. [22] K. Yosida. Functional Analysis, 6th edition. Spring, 1999. Zbl0152.32102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.