Spectral gap and convex concentration inequalities for birth–death processes
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 1, page 58-69
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. Zbl0924.46027MR1682772
- [2] M. F. Chen. Estimation of spectral gap for Markov chains. Acta Math. Sin. New Ser. 12 (1996) 337–360. Zbl0867.60038MR1457859
- [3] M. F. Chen. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. Sin. (A) 42 (1999) 805–815. Zbl0936.35120MR1738551
- [4] M. F. Chen. Explicit bounds of the first eigenvalue. Sci. China (A) 43 (2000) 1051–1059. Zbl1054.60082MR1802148
- [5] M. F. Chen. Variational formulas and approximation theorems for the first eigenvalue. Sci. China (A) 44 (2001) 409–418. Zbl1012.34078MR1831443
- [6] M. F. Chen. From Markov Chains to Non-equilibrium Particle Systems, 2nd edition. Springer, 2004. Zbl1078.60003MR2091955
- [7] M. F. Chen. Eigenvalues, Inequalities and Ergodic Theory. Springer, 2005. Zbl1079.60005MR2105651
- [8] M. F. Chen and F. Y. Wang. Application of coupling method to the first eigenvalue on manifold. Sci. Sin. (A) 23 (1993) 1130–1140 (Chinese Edition); 37 (1994) 1–14 (English Edition). Zbl0799.53044MR1308707
- [9] M. F. Chen and F. Y. Wang. Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (1997) 1239–1267. Zbl0872.35072MR1401516
- [10] H. Djellout and L. M. Wu. Spectral gap of one dimensional diffusions in Lipschitz norm and application to log-Sobolev inequalities for Gibbs measures. Preprint, 2007.
- [11] A. Guillin, C. Léonard, L. M. Wu and N. Yao. Transportation-information inequalities for Markov processes. Preprint, 2007. Zbl1169.60304
- [12] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58 (1963) 13–30. Zbl0127.10602MR144363
- [13] A. Joulin. A new Poisson-type deviation inequality for Markov jump process with positive Wasserstein curvature. Preprint, 2007. Zbl1202.60136MR2348750
- [14] T. Klein, Y. T. Ma and N. Privault. Convex concentration inequalities and forward/backward stochastic calculus. Electron. J. Probab. 11 (2006) 486–512. Zbl1112.60034MR2242653
- [15] T. J. Lyons and W. A. Zheng. A crossing estimate for the canonical process on a Dirichlet space and a tightness result. Astérique 157–158 (1988) 249–271. Zbl0654.60059
- [16] Y. T. Ma. Grandes déviations et concentration convexe en temps continu et discret. PhD thesis, Université de La Rochelle (France) et Université de Wuhan (Chine), 2006. Available at http://perso.univ-lr.fr/yma/thesis.pdf.
- [17] L. Miclo. An exemple of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5 (1999) 319–330. Zbl0942.60081MR1710983
- [18] Z. K. Wang and X. Q. Yang. Birth–Death Processes and Markov Chains. Academic Press of China, Beijing, 2005 (in Chinese). Zbl0773.60065
- [19] L. M. Wu. Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23 (1995) 420–445. Zbl0828.60017MR1330777
- [20] L. M. Wu. Forward–backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 121–141. Zbl0936.60037MR1678517
- [21] L. M. Wu. Essential spectral radius for Markov semigroups (I): discrete time case. Probab. Theory Related Fields 128 (2004) 255–321. Zbl1056.60068MR2031227
- [22] K. Yosida. Functional Analysis, 6th edition. Spring, 1999. Zbl0152.32102