A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices

Fumio Hiai; Dénes Petz

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 1, page 71-85
  • ISSN: 0246-0203

How to cite

top

Hiai, Fumio, and Petz, Dénes. "A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices." Annales de l'I.H.P. Probabilités et statistiques 36.1 (2000): 71-85. <http://eudml.org/doc/77650>.

@article{Hiai2000,
author = {Hiai, Fumio, Petz, Dénes},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; random unitary matrix; eigenvalue density; logarithmic energy},
language = {eng},
number = {1},
pages = {71-85},
publisher = {Gauthier-Villars},
title = {A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices},
url = {http://eudml.org/doc/77650},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Hiai, Fumio
AU - Petz, Dénes
TI - A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 1
SP - 71
EP - 85
LA - eng
KW - large deviations; random unitary matrix; eigenvalue density; logarithmic energy
UR - http://eudml.org/doc/77650
ER -

References

top
  1. [1] G. Ben Arous and A. Guionnet, Large deviation for Wigner's law and Voiculescu's non commutative entropy, Probab. Theory Related Fields108 (1997) 517-542. Zbl0954.60029MR1465640
  2. [2] C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer, New York, 1984. Zbl0619.43001MR747302
  3. [3] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993. Zbl0793.60030MR1202429
  4. [4] D.J. Gross and E. Witten, Possible third-order phase transition in the large-N lattice gauge theory, Phys. Rev. D21 (1980) 446-453. 
  5. [5] F. Hiai and D. Petz, Maximizing free entropy, Acta Math. Hungar.80 (1998) 325-346. Zbl0913.94003MR1645292
  6. [6] F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, to be published. Zbl0955.46037
  7. [7] F. Hiai and D. Petz, Properties of free entropy related to polar decomposition, Comm. Math. Phys.202 (1999) 421-444. Zbl0934.46063MR1690034
  8. [8] P. Koosis, Introduction to Hp Spaces, Cambridge Univ. Press, Cambridge, 1980. Zbl0435.30001MR565451
  9. [9] N.S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972. (Translated from the Russian). Zbl0253.31001MR350027
  10. [10] M.L. Mehta, Random Matrices, Academic Press, Boston, 1991. Zbl0780.60014MR1083764
  11. [11] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory, I, Comm. Math. Phys.155 (1993) 71-92. Zbl0781.60006MR1228526
  12. [12] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory, II, Invent. Math.118 (1994) 411-440. Zbl0820.60001MR1296352
  13. [13] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory III: The absence of Cartan subalgebras, Geom. Funct. Anal.6 ( 1996) 172-199. Zbl0856.60012MR1371236
  14. [14] D.V. Voiculescu, K.J. Dykema and A. Nica, Free Random Variables, CRM Monograph Ser., Vol. 1, Amer. Math. Soc., 1992. Zbl0795.46049MR1217253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.