Weak convergence for empirical processes of associated sequences

Sana Louhichi

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 5, page 547-567
  • ISSN: 0246-0203

How to cite

top

Louhichi, Sana. "Weak convergence for empirical processes of associated sequences." Annales de l'I.H.P. Probabilités et statistiques 36.5 (2000): 547-567. <http://eudml.org/doc/77671>.

@article{Louhichi2000,
author = {Louhichi, Sana},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical processes; weak convergence; associated random variables; stationary sequences; mixing; linear processes},
language = {eng},
number = {5},
pages = {547-567},
publisher = {Gauthier-Villars},
title = {Weak convergence for empirical processes of associated sequences},
url = {http://eudml.org/doc/77671},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Louhichi, Sana
TI - Weak convergence for empirical processes of associated sequences
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 5
SP - 547
EP - 567
LA - eng
KW - empirical processes; weak convergence; associated random variables; stationary sequences; mixing; linear processes
UR - http://eudml.org/doc/77671
ER -

References

top
  1. [1] Andrews D.W.K., Pollard D., An introduction to functional central limit theorems for dependent stochastic processes, Int. Stat. Rev.62 (1994) 119-132. Zbl0834.60033
  2. [2] Billingsley P., Probability and Measure, Wiley, New York, 1968. 
  3. [3] Bradley R.C., Basic properties of strong mixing conditions, in: Eberlein E., Taqqu M.S. (Eds.), Dependence in Probability and Statistics, Birkhäuser, Boston, 1986, pp. 165-192. Zbl0603.60034MR899990
  4. [4] Burton R.M., Dabrowski A.R., Dehling H., An invariance principle for weakly associated random variables, Stoch. Proc. Appl.23 (1986) 301-306. Zbl0611.60028MR876052
  5. [5] Doukhan P., Mixing: Properties and Examples, Lecture Notes in Statist., Vol. 85, Springer-Verlag, Berlin, 1994. Zbl0801.60027MR1312160
  6. [6] Doukhan P., Massart P., Rio E., Invariance principle for the empirical measure of a weakly dependent process, Ann. I.H.P.31 (2) (1995) 393-427. Zbl0817.60028MR1324814
  7. [7] Esary J., Proschan F., Walkup D., Association of random variables with applications, Ann. Math. Stat.38 (1967) 1466-1476. Zbl0183.21502MR217826
  8. [8] Giraitis L., Surgailis D., A central limit theorem for the empirical process of a long memory linear sequence, Preprint, 1994. Zbl0943.60035
  9. [9] Newman C.M., Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Tong Y.L. (Ed.), Inequalities in Statistics and Probability, I.M.S. Lecture Notes-Monograph Series, Vol. 5, 1984, pp. 127-140. MR789244
  10. [10] Petrov V.V., Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995. Zbl0826.60001MR1353441
  11. [11] Pitt L., Positively correlated normal variables are associated, Ann. Probab.10 (1982) 496-499. Zbl0482.62046MR665603
  12. [12] Pham T.D., Tran L.T., Some mixing properties of time series models, Stoch. Proc. Appl.19 (1985) 297-303. Zbl0564.62068MR787587
  13. [13] Shao Q.M., Yu H., Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab.24 (4) (1996) 2052-2078. Zbl0874.60006MR1415243
  14. [14] Volkonski V.A., Rozanov Y.A., Some limit theorems for random functions, Theory Probab. Appl.4 (1959) 178-197. Zbl0092.33502MR121856
  15. [15] Yu H., A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences, Probab. Theory Related Fields95 (1993) 357-370. Zbl0792.60018MR1213196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.