Weak convergence for empirical processes of associated sequences
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 5, page 547-567
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLouhichi, Sana. "Weak convergence for empirical processes of associated sequences." Annales de l'I.H.P. Probabilités et statistiques 36.5 (2000): 547-567. <http://eudml.org/doc/77671>.
@article{Louhichi2000,
author = {Louhichi, Sana},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical processes; weak convergence; associated random variables; stationary sequences; mixing; linear processes},
language = {eng},
number = {5},
pages = {547-567},
publisher = {Gauthier-Villars},
title = {Weak convergence for empirical processes of associated sequences},
url = {http://eudml.org/doc/77671},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Louhichi, Sana
TI - Weak convergence for empirical processes of associated sequences
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 5
SP - 547
EP - 567
LA - eng
KW - empirical processes; weak convergence; associated random variables; stationary sequences; mixing; linear processes
UR - http://eudml.org/doc/77671
ER -
References
top- [1] Andrews D.W.K., Pollard D., An introduction to functional central limit theorems for dependent stochastic processes, Int. Stat. Rev.62 (1994) 119-132. Zbl0834.60033
- [2] Billingsley P., Probability and Measure, Wiley, New York, 1968.
- [3] Bradley R.C., Basic properties of strong mixing conditions, in: Eberlein E., Taqqu M.S. (Eds.), Dependence in Probability and Statistics, Birkhäuser, Boston, 1986, pp. 165-192. Zbl0603.60034MR899990
- [4] Burton R.M., Dabrowski A.R., Dehling H., An invariance principle for weakly associated random variables, Stoch. Proc. Appl.23 (1986) 301-306. Zbl0611.60028MR876052
- [5] Doukhan P., Mixing: Properties and Examples, Lecture Notes in Statist., Vol. 85, Springer-Verlag, Berlin, 1994. Zbl0801.60027MR1312160
- [6] Doukhan P., Massart P., Rio E., Invariance principle for the empirical measure of a weakly dependent process, Ann. I.H.P.31 (2) (1995) 393-427. Zbl0817.60028MR1324814
- [7] Esary J., Proschan F., Walkup D., Association of random variables with applications, Ann. Math. Stat.38 (1967) 1466-1476. Zbl0183.21502MR217826
- [8] Giraitis L., Surgailis D., A central limit theorem for the empirical process of a long memory linear sequence, Preprint, 1994. Zbl0943.60035
- [9] Newman C.M., Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Tong Y.L. (Ed.), Inequalities in Statistics and Probability, I.M.S. Lecture Notes-Monograph Series, Vol. 5, 1984, pp. 127-140. MR789244
- [10] Petrov V.V., Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995. Zbl0826.60001MR1353441
- [11] Pitt L., Positively correlated normal variables are associated, Ann. Probab.10 (1982) 496-499. Zbl0482.62046MR665603
- [12] Pham T.D., Tran L.T., Some mixing properties of time series models, Stoch. Proc. Appl.19 (1985) 297-303. Zbl0564.62068MR787587
- [13] Shao Q.M., Yu H., Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab.24 (4) (1996) 2052-2078. Zbl0874.60006MR1415243
- [14] Volkonski V.A., Rozanov Y.A., Some limit theorems for random functions, Theory Probab. Appl.4 (1959) 178-197. Zbl0092.33502MR121856
- [15] Yu H., A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences, Probab. Theory Related Fields95 (1993) 357-370. Zbl0792.60018MR1213196
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.