Invariance principles for absolutely regular empirical processes
P. Doukhan; P. Massart; E. Rio
Annales de l'I.H.P. Probabilités et statistiques (1995)
- Volume: 31, Issue: 2, page 393-427
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDoukhan, P., Massart, P., and Rio, E.. "Invariance principles for absolutely regular empirical processes." Annales de l'I.H.P. Probabilités et statistiques 31.2 (1995): 393-427. <http://eudml.org/doc/77515>.
@article{Doukhan1995,
author = {Doukhan, P., Massart, P., Rio, E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {absolutely regular; empirical measure; quantile function; entropy with bracketing; functional invariance principle; strictly stationary sequence of random elements},
language = {eng},
number = {2},
pages = {393-427},
publisher = {Gauthier-Villars},
title = {Invariance principles for absolutely regular empirical processes},
url = {http://eudml.org/doc/77515},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Doukhan, P.
AU - Massart, P.
AU - Rio, E.
TI - Invariance principles for absolutely regular empirical processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 2
SP - 393
EP - 427
LA - eng
KW - absolutely regular; empirical measure; quantile function; entropy with bracketing; functional invariance principle; strictly stationary sequence of random elements
UR - http://eudml.org/doc/77515
ER -
References
top- N.T. Andersen, E. Giné, M. Ossiander and J. Zinn, The central limit theorem and the law of iterated logarithm for empirical processes under local conditions, Probab. Th. Rel. Fields, Vol. 77, 1988, pp. 271-305. Zbl0618.60022MR927241
- W.K. Andrews and D. Pollard, An introduction to functional central limit theorems for dependent stochastic processes, Inst. Stat. review, Vol. 62, 1994, pp. 119-132. Zbl0834.60033
- M.A. Arcones and B. Yu, Central limit theorems for empirical and U-processes of stationary mixing sequences, J. Theoret. Prob., Vol. 7, 1994, pp. 47-71. Zbl0786.60028MR1256391
- P. Bártfai, Über die Entfemung de Irrfahrtswege, Studia Sci. Math. Hungar, Vol. 1, 1970, pp. 161-168. MR215377
- R.F. Bass, Law of the iterated logarithm for set-indexed partial sum processes with finite variance, Z. Warsch. verw. Gebiete, Vol. 70, 1985, pp. 591-608. Zbl0575.60034MR807339
- H.C.P. Berbee, Random walks with stationary increments and renewal theory, Math. Cent. Tracts, Amsterdam, 1979. Zbl0443.60083MR547109
- I. Berkes and W. Phillip, An almost sure invariance principle for the empirical distribution of mixing random variables, Z. Wahrsch. Verw. Gebiete, Vol. 41, 1977, pp. 115-137. Zbl0349.60026MR464344
- E. Bolthausen, Weak convergence of an empirical process indexed by the closed convex subsets of I2, Z. Wahrsch. Verw. Gebiete, Vol. 43, 1978, pp. 173-181. Zbl0364.60033MR499430
- R.C. Bradley, Basic properties of strong mixing conditions, in Dependence in probability and statistics a survey of recent results, Oberwolfach1985, Birkhäuser, 1986. Zbl0603.60034MR899990
- Yu. A. Davydov, Mixing conditions for Markov chains, Theory Probab. Appl., Vol. 28, 1973, pp. 313-328. Zbl0297.60031
- S. Dhompongsa, A note on the almost sure approximation of empirical process of weakly dependent random vectors, Yokohama math. J., Vol. 32, 1984, pp. 113-121. Zbl0556.60015MR772909
- M. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smimov's theorems, Ann. Math. Stat., Vol. 23, 1952, pp. 277-281. Zbl0046.35103MR47288
- J.L. Doob, Stochastic Processes, Wiley, New-York, 1953. Zbl0053.26802MR58896
- P. Doukhan, Mixing: properties and examples, Lecture notes in Statistics85, Springer, 1994. Zbl0801.60027MR1312160
- P. Doukhan, J. León and F. Portal, Principe d'invariance faible pour la mesure empirique d'une suite de variables aléatoires dépendantes, Probab. Th. rel. fields, Vol. 76, 1987, pp. 51-70. Zbl0596.60037MR899444
- P. Doukhan, P. Massart and E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. H. Poincaré, Probab. Stat., Vol. 30, 1994, pp. 63-82. Zbl0790.60037MR1262892
- R.M. Dudley, Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces, Illinois J. Math., Vol. 10, 1966, pp. 109-126. Zbl0178.52502MR185641
- R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis, Vol. 1, 1967, pp. 290-330. Zbl0188.20502MR220340
- R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab., Vol. 6, 1978, pp. 899-929. Zbl0404.60016MR512411
- R.M. Dudley, A course on empirical processes. Ecole d'été de probabilités de Saint-Flour XII-1982. Lectures Notes in Math., Vol. 1097, Springer, Berlin, 1984, pp. 1-142. Zbl0554.60029MR876079
- M. Fréchet, Sur les tableaux de corrélation dont les marges sont données, Annales de l'université de Lyon, Sciences, section A, Vol. 14, 1951, pp. 53-77. Zbl0045.22905MR49518
- M. Fréchet, Sur la distance de deux lois de probabilité, C. R. Acad. Sci. Paris, Vol. 244, No. 6, 1957, pp. 689-692. Zbl0077.33007MR83210
- E. Giné and J. Zinn, Some limit theorems for empirical processes, Ann. Probab., Vol. 12, 1984, pp. 929-989. Zbl0553.60037MR757767
- N. Herrndorf, A functional central limit theorem for strongly mixing sequences of random variables, Z. Wahr. Verv. Gebiete, Vol. 69, 1985, pp. 541-550. Zbl0558.60032MR791910
- I.A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl., Vol. 7, 1962, pp. 349-382. Zbl0119.14204MR148125
- V.I. Kolchinskii, On the central limit theorem for empirical measures (In Russian), Teor. vero. i. mat. stat. (Kiev), Vol. 24, 1981, pp. 63-75. Zbl0478.60039MR628431
- A.N. Kolmogorov and Y.A. Rozanov, On the strong mixing conditions for stationary gaussian sequences, Theory Probab. Appl., Vol. 5, 1960, pp. 204-207. Zbl0106.12005
- P. Massart, Invariance principles for empirical processes: the weakly dependent case, Quelques problèmes de vitesse de convergence pour des mesures empiriques. Thèse d'Etat, Université de Paris-Sud, 1987.
- A. Mokkadem, Propriétés de mélange des modèles autorégressifs polynomiaux, Ann. Inst. Henri Poincaré, Probab. Stat., Vol. 26, 1990, pp. 219-260. Zbl0706.60040MR1063750
- M. Ossiander, A central limit theorem under metric entropy with L2-bracketing, Ann. Probab., Vol. 15, 1987, pp. 897-919. Zbl0665.60036MR893905
- W. Philipp and L. Pinzur, Almost sure approximation theorems for the multivariate empirical processes, Z. Wahr. Verv. Gebiete, Ser. A, Vol. 54, 1980, pp. 1-13. Zbl0424.60030MR595473
- D. Pollard, A central limit theorems for empirical processes, J. Aust. Math. Soc., Vol. 33, 1982, pp. 235-248. Zbl0504.60023MR668445
- D. Pollard, Convergence of stochastic processes, Springer, Berlin, 1984. Zbl0544.60045MR762984
- D. Pollard, Empirical processes: theory and applications, NSF-CBMS Regional Conference Series in Probability and Statistics IMS-ASA, Hayward-Alexandria, 1990. Zbl0741.60001MR1089429
- P. Révész, Three theorems of multivariate empirical process. Lectures Notes in Math., Vol. 566, Springer, Berlin, 1976, pp. 106-126. Zbl0354.60007MR436295
- E. Rio, Covariance inequalities for strongly mixing processes, Ann. Int. H. Poincaré, Prob. Stat., Vol. 29, 1993, pp. 587-597. Zbl0798.60027MR1251142
- M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Ac. Sc. U.S.A., Vol. 42, 1956, pp. 43-47. Zbl0070.13804MR74711
- A.V. Skorohod, On a representation of random variables, Theory Probab. Appl., Vol. 21, 1976, pp. 628-632. Zbl0362.60004MR428369
- T.G. Sun, Ph. D. dissertation, Dept of Mathematics, Univ. of Washington, Seattle, 1976.
- M. Talagrand, Regularity of Gaussian processes, Acta Math., Vol. 159, 1987, pp. 99-149. Zbl0712.60044MR906527
- V.A. Volkonskii and Y.A. Rozanov, Some limit theorems for random functions, Part I, Theory Probab. Appl., Vol. 4, 1959, pp. 178-197. Zbl0092.33502MR121856
- K. Yoshihara, Note on an almost sure invariance principle for some empirical processes, Yokohama math. J., Vol. 27, 1979, pp. 105-110. Zbl0418.60037MR560618
Citations in EuDML Documents
top- Sana Louhichi, Weak convergence for empirical processes of associated sequences
- Elisabeth Gassiat, Likelihood ratio inequalities with applications to various mixtures
- D. Bitouzé, B. Laurent, P. Massart, A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator
- Jérôme Dedecker, Florence Merlevède, The empirical distribution function for dependent variables: asymptotic and nonasymptotic results in
- David Pollard, Maximal inequalities via bracketing with adaptive truncation
- Madalina Olteanu, Joseph Rynkiewicz, Asymptotic properties of autoregressive regime-switching models
- Madalina Olteanu, Joseph Rynkiewicz, Asymptotic properties of autoregressive regime-switching models
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.