Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins

Pierre Fougères

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 5, page 647-689
  • ISSN: 0246-0203

How to cite

top

Fougères, Pierre. "Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins." Annales de l'I.H.P. Probabilités et statistiques 36.5 (2000): 647-689. <http://eudml.org/doc/77675>.

@article{Fougères2000,
author = {Fougères, Pierre},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gaussian isoperimetric inequality; hypercontractive reversible diffusion generator; discrete spin systems},
language = {fre},
number = {5},
pages = {647-689},
publisher = {Gauthier-Villars},
title = {Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins},
url = {http://eudml.org/doc/77675},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Fougères, Pierre
TI - Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 5
SP - 647
EP - 689
LA - fre
KW - Gaussian isoperimetric inequality; hypercontractive reversible diffusion generator; discrete spin systems
UR - http://eudml.org/doc/77675
ER -

References

top
  1. [1] Bakry D., L'hypercontractivité et son utilisation en théorie des semi-groupes, Ecole d'été de Probabilités de Saint Flour1992, Lecture Notes in Math., Vol. 1581, Springer, 1994. Zbl0856.47026MR1307413
  2. [2] Bakry D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in: Proceedings of the Taniguchi Symposium, Warwick, 1994. 
  3. [3] Bakry D., Emery M., Hypercontractivité des semi-groupes de diffusion, C. R. Acad. Sc. Paris, Série I 299 (15) (1984). Zbl0563.60068MR772092
  4. [4] Bakry D., Ledoux M., Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math.123 (2) (1996) 259-281. Zbl0855.58011MR1374200
  5. [5] Bakry D., Michel D., Sur les inégalités FKG, Annales de la Faculté des Sciences de ToulouseXI (2) (1990). 
  6. [6] Barthe F., Maurey B., Some remarks on isoperimetry of Gaussian type, Preprint, 1999. Zbl0964.60018
  7. [7] Bobkov S., A functional form of the isoperimetric inequality for the Gaussian measure, J. Functional Analysis135 (1996) 39-49. Zbl0838.60013MR1367623
  8. [8] Bobkov S., An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space, Ann. Probab.25 (1997) 206-214. Zbl0883.60031MR1428506
  9. [9] Carlen E.A., Stroock D.W., An application of the Bakry-Emery criterion to infinite dimensional diffusions, Séminaire de Probabilités, Lecture Notes in Math., Vol. 1204, Springer, Berlin, 1986. Zbl0609.60086MR942029
  10. [10] Diaconis P., Saloff-Coste L., Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab.6 (3) (1996) 695-750. Zbl0867.60043MR1410112
  11. [11] Ellis R., Entropy, Large Deviations and Statistical Mechanics, Grundlehren der Mathematischen Wissenschaften, Vol. 271, Springer, 1985. Zbl0566.60097MR793553
  12. [12] Georgii H.-O., Gibbs Measures and Phase Transitions, De Gruyter, Berlin, 1988. Zbl0657.60122MR956646
  13. [13] Holley R., Stroock D.W., Logarithmic Sobolev inequalities and stochastic Ising models, J. Statist. Phys.46 (4-5) (1987). Zbl0682.60109MR893137
  14. [14] Holley R., Stroock D.W., Uniform and L2 convergence in one dimensional stochastic Ising models, Comm. Math. Phys.123 (1989) 85-93. Zbl0666.60104MR1002033
  15. [15] Laroche E., Hypercontractivité pour des systèmes de spins de portée infinie, Probab. Theory Related Fields101 (1995) 89-132. Zbl0820.60082MR1314176
  16. [16] Ledoux M., On Talagrand's deviation inequalities for product measures, ESAIM Probab. Statist. 1 (1995/97) 63-87. Zbl0869.60013MR1399224
  17. [17] Ledoux M., Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1994), Lecture Notes in Math., Vol. 1648, Springer, Berlin, 1996, pp. 165-294. Zbl0874.60005MR1600888
  18. [18] Ledoux M., Concentration of measure and logarithmic Sobolev inequalities, Preprint (To appear in: Séminaire de Probabilités, Lecture Notes in Math., Springer). Zbl0957.60016MR1767995
  19. [19] Stroock D.W., Zegarlinski B., The logarithmic Sobolev inequality for continuous spin systems on a lattice, J. Functional Anal.104 (1992) 299-326. Zbl0794.46025MR1153990
  20. [20] Stroock D.W., Zegarlinski B., The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Comm. Math. Phys.144 (2) (1992) 303-323. Zbl0745.60104MR1152374
  21. [21] Stroock D.W., Zegarlinski B., On the ergodic properties of Glauber dynamics, J. Statist. Phys.81 (5/6) (1995). Zbl1081.60562MR1361304
  22. [22] Yoshida N., The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Preprint, 1998. 
  23. [23] Zegarlinski B., Log-Sobolev inequalities for infinite one-dimensional lattice systems, Comm. Math. Phys.133 (1) (1990) 147-162. Zbl0713.60080MR1071239
  24. [24] Zegarlinski B., Dobrushin uniqueness theorem and logarithmic Sobolev inequalities, J. Functional Anal.105 (1992) 77-111. Zbl0761.46020MR1156671
  25. [25] Zegarlinski B., Isoperimetry for Gibbs measures, Preprint, 1999. MR1849178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.