Limit velocity for a driven particle in a random medium with mass aggregation
Luiz Renato G. Fontes; Eduardo Jordão Neves; Vladas Sidoravicius
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 6, page 787-805
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFontes, Luiz Renato G., Jordão Neves, Eduardo, and Sidoravicius, Vladas. "Limit velocity for a driven particle in a random medium with mass aggregation." Annales de l'I.H.P. Probabilités et statistiques 36.6 (2000): 787-805. <http://eudml.org/doc/77680>.
@article{Fontes2000,
author = {Fontes, Luiz Renato G., Jordão Neves, Eduardo, Sidoravicius, Vladas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {mass aggregation; Markovian approximation; asymptotic velocity; infinite system of particles},
language = {eng},
number = {6},
pages = {787-805},
publisher = {Gauthier-Villars},
title = {Limit velocity for a driven particle in a random medium with mass aggregation},
url = {http://eudml.org/doc/77680},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Fontes, Luiz Renato G.
AU - Jordão Neves, Eduardo
AU - Sidoravicius, Vladas
TI - Limit velocity for a driven particle in a random medium with mass aggregation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 6
SP - 787
EP - 805
LA - eng
KW - mass aggregation; Markovian approximation; asymptotic velocity; infinite system of particles
UR - http://eudml.org/doc/77680
ER -
References
top- [1] J.C. Bonvin, Ph.A. Martin, J. Piasecki, X. Zotos, Statistics of mass aggregation in a self-gravitating one-dimensional gas, J. Statist. Phys.91 (1998) 177-197. Zbl0946.82034
- [2] C. Boldrighini, A. De Masi, A. Nogueira, E. Presutti, The dynamics of a particle interacting with a semi-infinite ideal gas is a Bernoulli flow, in: J. Fritz, A. Jaffe, D. Szasz (Eds.), Statistical Physics and Dynamical Systems: Rigorous Results, Progress in Physics, Vol. 10, Birkhäuser, Basel, 1985. Zbl0661.76066MR821296
- [3] C. Boldrighini, A. Pellegrinotti, E. Presutti, Ya. Sinai, M. Soloveitchik, Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics, Comm. Math. Phys.101 (1985) 363-382. MR815190
- [4] C. Boldrighini, M. Soloveitchik, Drift and diffusion for a mechanical system, Probab. Theory Related Fields103 (1985) 349-379. Zbl0832.60075MR1358082
- [5] W. E, Yu. Rykov, Ya.G. Sinai, Generalized variational principles, global weak solutions and behaviour with random initial data for systems of conservation laws arising in adhesion particle systems, Comm. Math. Phys.177 (1996) 349-380. Zbl0852.35097MR1384139
- [6] G.A. Galperin, Elastic collisions of particles on the line, Russian Math. Surveys (Uspekhi Mat. Nauk)33 (1978) 211-212. Zbl0424.28018MR473140
- [7] A. Lenard, States of classical statistical mechanics of infinitely many particles, Arch. Rational Mech. Anal.59 (1975) 219. MR391830
- [8] Ph.A. Martin, J. Piasecki, One-dimensional ballistic aggregation: rigorous long-time estimates, J. Statist. Phys.76 (1994) 447-476.
- [9] Ph.A. Martin, J. Piasecki, Aggregation dynamics in a self-gravitating one-dimensional gas, J. Statist. Phys.84 (1995) 837-857. Zbl1081.82620MR1400187
- [10] A. Pellegrinotti, V. Sidoravicius, M.E. Vares (1999) Stationary state and diffusion for a charged particle in one-dimensional medium with lifetimes, SIAM Theory Probab. Appl. , to appear. Zbl1044.82556MR1811133
- [11] E. Presutti, Ya. Sinai, M. Soloveitchik, Hyperbolicity and Moller morphism for a model of classical statistical mechanics, in: J. Fritz, A. Jaffe, D. Szasz (Eds.), Statistical Physics and Dynamical Systems: Rigorous Results, Progress in Physics, Vol. 10, Birkhäuser, Basel, 1985. Zbl0643.58049MR821301
- [12] V. Sidoravicius, L. Triolo, M.E. Vares, On the forced motion of a heavy particle in a random medium I. Existence of dynamics, Markov Proc. Related Fields4 (???) 629-649. Zbl0924.60097MR1677062
- [13] V. Sidoravicius, L. Triolo, M.E. Vares, Mixing properties for the mechanical motion of a charged particle in a random medium, CARR-Report8/98, 1998. Zbl1041.82012
- [14] Ya.G. Sinai, Billiard trajectories in a polyhedral angle, Russian Math. Surveys33 ( 1978) 219-220. Zbl0426.28019MR488170
- [15] Ya.G. Sinai, M. Soloveitchik, One-dimensional classical massive particle in the ideal gas, Comm. Math. Phys.104 (1986) 423-443. Zbl0589.60084MR840745
- [16] M. Soloveitchik, Conservative dynamical systems in a polyhedral angle. Existence of dynamics, Nonlinearity8367 (1995) 378. Zbl0826.70010MR1331817
- [17] M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, Burgers'equation, devil's staircases and the mass distribution function for large-scale structures, Astronom. and Astrophys.2889 (1994) 325-356.
- [18] Ya.B. Zeldovich, Gravitational instability: an approximate theory for large density perturbations, Astronom. and Astrophys.5 (1970) 84-89.
- [19] L.N. Vaserstein, On systems of particles with finite range and/or repulsive interactions, Comm. Math. Phys.69 (1979) 31-56.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.