Limit velocity for a driven particle in a random medium with mass aggregation

Luiz Renato G. Fontes; Eduardo Jordão Neves; Vladas Sidoravicius

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 6, page 787-805
  • ISSN: 0246-0203

How to cite

top

Fontes, Luiz Renato G., Jordão Neves, Eduardo, and Sidoravicius, Vladas. "Limit velocity for a driven particle in a random medium with mass aggregation." Annales de l'I.H.P. Probabilités et statistiques 36.6 (2000): 787-805. <http://eudml.org/doc/77680>.

@article{Fontes2000,
author = {Fontes, Luiz Renato G., Jordão Neves, Eduardo, Sidoravicius, Vladas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {mass aggregation; Markovian approximation; asymptotic velocity; infinite system of particles},
language = {eng},
number = {6},
pages = {787-805},
publisher = {Gauthier-Villars},
title = {Limit velocity for a driven particle in a random medium with mass aggregation},
url = {http://eudml.org/doc/77680},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Fontes, Luiz Renato G.
AU - Jordão Neves, Eduardo
AU - Sidoravicius, Vladas
TI - Limit velocity for a driven particle in a random medium with mass aggregation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 6
SP - 787
EP - 805
LA - eng
KW - mass aggregation; Markovian approximation; asymptotic velocity; infinite system of particles
UR - http://eudml.org/doc/77680
ER -

References

top
  1. [1] J.C. Bonvin, Ph.A. Martin, J. Piasecki, X. Zotos, Statistics of mass aggregation in a self-gravitating one-dimensional gas, J. Statist. Phys.91 (1998) 177-197. Zbl0946.82034
  2. [2] C. Boldrighini, A. De Masi, A. Nogueira, E. Presutti, The dynamics of a particle interacting with a semi-infinite ideal gas is a Bernoulli flow, in: J. Fritz, A. Jaffe, D. Szasz (Eds.), Statistical Physics and Dynamical Systems: Rigorous Results, Progress in Physics, Vol. 10, Birkhäuser, Basel, 1985. Zbl0661.76066MR821296
  3. [3] C. Boldrighini, A. Pellegrinotti, E. Presutti, Ya. Sinai, M. Soloveitchik, Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics, Comm. Math. Phys.101 (1985) 363-382. MR815190
  4. [4] C. Boldrighini, M. Soloveitchik, Drift and diffusion for a mechanical system, Probab. Theory Related Fields103 (1985) 349-379. Zbl0832.60075MR1358082
  5. [5] W. E, Yu. Rykov, Ya.G. Sinai, Generalized variational principles, global weak solutions and behaviour with random initial data for systems of conservation laws arising in adhesion particle systems, Comm. Math. Phys.177 (1996) 349-380. Zbl0852.35097MR1384139
  6. [6] G.A. Galperin, Elastic collisions of particles on the line, Russian Math. Surveys (Uspekhi Mat. Nauk)33 (1978) 211-212. Zbl0424.28018MR473140
  7. [7] A. Lenard, States of classical statistical mechanics of infinitely many particles, Arch. Rational Mech. Anal.59 (1975) 219. MR391830
  8. [8] Ph.A. Martin, J. Piasecki, One-dimensional ballistic aggregation: rigorous long-time estimates, J. Statist. Phys.76 (1994) 447-476. 
  9. [9] Ph.A. Martin, J. Piasecki, Aggregation dynamics in a self-gravitating one-dimensional gas, J. Statist. Phys.84 (1995) 837-857. Zbl1081.82620MR1400187
  10. [10] A. Pellegrinotti, V. Sidoravicius, M.E. Vares (1999) Stationary state and diffusion for a charged particle in one-dimensional medium with lifetimes, SIAM Theory Probab. Appl. , to appear. Zbl1044.82556MR1811133
  11. [11] E. Presutti, Ya. Sinai, M. Soloveitchik, Hyperbolicity and Moller morphism for a model of classical statistical mechanics, in: J. Fritz, A. Jaffe, D. Szasz (Eds.), Statistical Physics and Dynamical Systems: Rigorous Results, Progress in Physics, Vol. 10, Birkhäuser, Basel, 1985. Zbl0643.58049MR821301
  12. [12] V. Sidoravicius, L. Triolo, M.E. Vares, On the forced motion of a heavy particle in a random medium I. Existence of dynamics, Markov Proc. Related Fields4 (???) 629-649. Zbl0924.60097MR1677062
  13. [13] V. Sidoravicius, L. Triolo, M.E. Vares, Mixing properties for the mechanical motion of a charged particle in a random medium, CARR-Report8/98, 1998. Zbl1041.82012
  14. [14] Ya.G. Sinai, Billiard trajectories in a polyhedral angle, Russian Math. Surveys33 ( 1978) 219-220. Zbl0426.28019MR488170
  15. [15] Ya.G. Sinai, M. Soloveitchik, One-dimensional classical massive particle in the ideal gas, Comm. Math. Phys.104 (1986) 423-443. Zbl0589.60084MR840745
  16. [16] M. Soloveitchik, Conservative dynamical systems in a polyhedral angle. Existence of dynamics, Nonlinearity8367 (1995) 378. Zbl0826.70010MR1331817
  17. [17] M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, Burgers'equation, devil's staircases and the mass distribution function for large-scale structures, Astronom. and Astrophys.2889 (1994) 325-356. 
  18. [18] Ya.B. Zeldovich, Gravitational instability: an approximate theory for large density perturbations, Astronom. and Astrophys.5 (1970) 84-89. 
  19. [19] L.N. Vaserstein, On systems of particles with finite range and/or repulsive interactions, Comm. Math. Phys.69 (1979) 31-56. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.