Phase coexistence in Ising, Potts and percolation models
Raphaël Cerf; Ágoston Pisztora
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 6, page 643-724
- ISSN: 0246-0203
Access Full Article
topHow to cite
topCerf, Raphaël, and Pisztora, Ágoston. "Phase coexistence in Ising, Potts and percolation models." Annales de l'I.H.P. Probabilités et statistiques 37.6 (2001): 643-724. <http://eudml.org/doc/77703>.
@article{Cerf2001,
author = {Cerf, Raphaël, Pisztora, Ágoston},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {6},
pages = {643-724},
publisher = {Elsevier},
title = {Phase coexistence in Ising, Potts and percolation models},
url = {http://eudml.org/doc/77703},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Cerf, Raphaël
AU - Pisztora, Ágoston
TI - Phase coexistence in Ising, Potts and percolation models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 6
SP - 643
EP - 724
LA - eng
UR - http://eudml.org/doc/77703
ER -
References
top- [1] K.S. Alexander, Cube-root boundary fluctuations for droplets in random cluster models, Preprint, 2000. MR1871907
- [2] F.J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc.4 (165) (1976). Zbl0327.49043MR420406
- [3] G. Alberti, G. Bellettini, M. Cassandro, E. Presutti, Surface tension in Ising systems with Kac potentials, J. Stat. Phys.82 (1996) 743-796. Zbl1042.82539MR1372427
- [4] K.S. Alexander, J.T. Chayes, L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation, Comm. Math. Phys.131 (1990) 1-50. Zbl0698.60098MR1062747
- [5] L. Ambrosio, A. Braides, Functionals defined on partitions in sets of finite perimeter I: Integral representation and Γ-convergence, J. Math. Pures et Appl.69 (1990) 285-305. Zbl0676.49028
- [6] L. Ambrosio, A. Braides, Functionals defined on partitions in sets of finite perimeter II: Semicontinuity, relaxation and homogenization, J. Math. Pures et Appl.69 (1990) 307-333. Zbl0676.49029MR1070482
- [7] L. Ambrosio, M. Novaga, E. Paolini, Some regularity results for minimal crystals, Preprint, 2000. Zbl1066.49021MR1932945
- [8] Assouad P., Quentin de Gromard T., Sur la dérivation des mesures dans Rn, Note (1998).
- [9] O. Benois, T. Bodineau, P. Buttà, E. Presutti, On the validity of van der Waals theory of surface tension, Markov Process. Rel. Fields3 (1997) 175-198. Zbl0910.60014MR1468173
- [10] O. Benois, T. Bodineau, E. Presutti, Large deviations in the van der Waals limit, Stochastic Process. Appl.75 (1998) 89-104. Zbl0927.60080MR1629026
- [11] A.S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc.41 (1945) 103-110, Part II. Proc. Cambridge Philos. Soc. 42 (1946) 1–10. Zbl0063.00352
- [12] T. Bodineau, The Wulff construction in three and more dimensions, Comm. Math. Phys.207 (1) (1999) 197-229. Zbl1015.82005MR1724851
- [13] T. Bodineau, D. Ioffe, Y. Velenik, Rigorous probabilistic analysis of equilibrium crystal shapes, J. Math. Phys.41 (3) (2000) 1033-1098. Zbl0977.82013MR1757951
- [14] R. Cerf, Large deviations for three dimensional supercritical percolation, Astérisque267 (2000). Zbl0962.60002MR1774341
- [15] R. Cerf, A. Pisztora, On the Wulff crystal in the Ising model, Ann. Probab.28 (3) (2000) 945-1015. Zbl1034.82006MR1797302
- [16] G. Congedo, I. Tamanini, Optimal partitions with unbounded data, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX Ser., Rend. Lincei., Mat. Appl.4 (2) (1993) 103-108. Zbl0776.49027MR1233397
- [17] G. Congedo, I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire8 (2) (1991) 175-195. Zbl0729.49003MR1096603
- [18] G. Congedo, I. Tamanini, Regularity properties of optimal segmentations, J. Reine Angew. Math.420 (1991) 61-84. Zbl0729.49004MR1124566
- [19] E. De Giorgi, Nuovi teoremi relativi alle misure (r−1)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat.4 (1955) 95-113. Zbl0066.29903
- [20] E. De Giorgi, F. Colombini, L.C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Scuola Normale Superiore di Pisa (1972). Zbl0296.49031MR493669
- [21] J.-D. Deuschel, A. Pisztora, Surface order large deviations for high-density percolation, Probab. Theory Relat. Fields104 (1996) 467-482. Zbl0842.60023MR1384041
- [22] R.L. Dobrushin, R. Kotecký, S.B. Shlosman, Wulff Construction: A Global Shape from Local Interaction, AMS Translations Series, Providence, RI, 1992. Zbl0917.60103MR1181197
- [23] R.L. Dobrushin, S.B. Shlosman, Thermodynamic inequalities for the surface tension and the geometry of the Wulff construction, in: Albeverio S. (Ed.), Ideas and Methods in Quantum and Statistical Physics, Cambridge University Press, 1992, pp. 461-483. Zbl0786.52006MR1190540
- [24] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [25] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge Univ. Press, 1985. Zbl0587.28004MR867284
- [26] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. Zbl0874.49001MR257325
- [27] C.M. Fortuin, P.W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica57 (1972) 536-564. MR359655
- [28] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. Zbl0545.49018MR775682
- [29] G.R. Grimmett, Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer-Verlag, Berlin, 1999. Zbl0926.60004MR1707339
- [30] G.R. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Probab.23 (1995) 1461-1510. Zbl0852.60105MR1379156
- [31] G.R. Grimmett, J.M. Marstrand, The supercritical phase of percolation is well behaved, Proc. R. Soc. Lond. Ser. A430 (1990) 439-457. Zbl0711.60100MR1068308
- [32] J. Hass, M. Hutchings, R. Schlafly, The double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc.1 (3) (1995) 98-102, (electronic). Zbl0864.53007MR1369639
- [33] D. Ioffe, Large deviations for the 2D Ising model: a lower bound without cluster expansions, J. Stat. Phys.74 (1993) 411-432. Zbl0946.82502MR1257822
- [34] D. Ioffe, Exact large deviation bounds up to Tc for the Ising model in two dimensions, Probab. Theory Relat. Fields102 (1995) 313-330. Zbl0830.60018MR1339736
- [35] D. Ioffe, R. Schonmann, Dobrushin–Kotecký–Shlosman Theorem up to the critical temperature, Comm. Math. Phys.199 (1998) 117-167. Zbl0929.60076MR1660207
- [36] H. Kesten, Y. Zhang, The probability of a large finite cluster in supercritical Bernoulli percolation, Ann. Probab.18 (1990) 537-555. Zbl0705.60092MR1055419
- [37] S. Lang, Differential Manifolds, Springer-Verlag, 1985. Zbl0551.58001MR772023
- [38] G. Lawlor, F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math.166 (1) (1994) 55-82. Zbl0830.49028MR1306034
- [39] J.L. Lebowitz, A.E. Mazel, Yu.M. Suhov, An Ising interface between two walls: competition between two tendencies, Rev. Math. Phys.8 (5) (1996) 669-687. Zbl0858.60099MR1405769
- [40] G.P. Leonardi, Optimal subdivisions of n-dimensional domains. Ph.D. Thesis, Università di Trento, 1998.
- [41] U. Massari, M. Miranda, Minimal Surfaces of Codimension One, North-Holland Mathematics Studies 91, Notas de Matematica, 95, North-Holland, 1984. Zbl0565.49030MR795963
- [42] U. Massari, L. Pepe, Sull'approssimazione degli aperti lipschitziani di Rn con varietà differenziabili, Bollettino U.M.I. (4)10 (1974) 532-544. Zbl0316.49031MR365318
- [43] A. Messager, S. Miracle-Solé, J. Ruiz, Convexity properties of the surface tension and equilibrium crystals, J. Stat. Phys.67 (3/4) (1992) 449-469. Zbl0900.82029MR1171142
- [44] S. Miracle-Solé, Surface tension, step free energy, and facets in the equilibrium crystal, J. Stat. Phys.79 (1/2) (1995) 183-214. Zbl1106.82303
- [45] C.M. Newman, Topics in Disordered Systems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1997. Zbl0897.60093MR1480664
- [46] C.E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta64 (1991) 953-1054. MR1149430
- [47] C.E. Pfister, Y. Velenik, Interface, surface tension and reentrant pinning transition in the 2D Ising model, Comm. Math. Phys.204 (2) (1999) 269-312. Zbl0937.82016MR1704276
- [48] C.E. Pfister, Y. Velenik, Large deviations and continuum limit in the 2D Ising model, Probab. Theory Related Fields109 (1997) 435-506. Zbl0904.60022MR1483597
- [49] A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields104 (1996) 427-466. Zbl0842.60022MR1384040
- [50] T. Quentin de Gromard, Approximation forte dans BV(Ω), C. R. Acad. Sci. Paris, Ser. I301 (1985) 261-264. Zbl0593.46026
- [51] R.H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region, Comm. Math. Phys.112 (1987) 409-422. MR908546
- [52] Y. Velenik, Ph.D. Thesis, EPFL, 1997.
- [53] A.I. Vol'pert, The spaces BV and quasilinear equations, Math. USSR Sb.2 (1967) 225-267. Zbl0168.07402MR216338
- [54] W.P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.