Maximal inequalities via bracketing with adaptive truncation

David Pollard

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 6, page 1039-1052
  • ISSN: 0246-0203

How to cite

top

Pollard, David. "Maximal inequalities via bracketing with adaptive truncation." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 1039-1052. <http://eudml.org/doc/77736>.

@article{Pollard2002,
author = {Pollard, David},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {bracketing; adaptive truncation; empirical process; functional central limit theorem},
language = {eng},
number = {6},
pages = {1039-1052},
publisher = {Elsevier},
title = {Maximal inequalities via bracketing with adaptive truncation},
url = {http://eudml.org/doc/77736},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Pollard, David
TI - Maximal inequalities via bracketing with adaptive truncation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 1039
EP - 1052
LA - eng
KW - bracketing; adaptive truncation; empirical process; functional central limit theorem
UR - http://eudml.org/doc/77736
ER -

References

top
  1. [1] K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab.14 (1986) 582-597. Zbl0595.60027MR832025
  2. [2] N.T. Andersen, E. Giné, M. Ossiander, J. Zinn, The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Z. Wahrscheinlichkeitstheorie Verw. Geb.77 (1988) 271-306. Zbl0618.60022MR927241
  3. [3] R.F. Bass, Law of the iterated logarithm for set-indexed partial-sum processes with finite variance, Z. Wahrscheinlichkeitstheorie Verw. Geb.70 (1985) 591-608. Zbl0575.60034MR807339
  4. [4] R.F. Bass, R. Pyke, Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets, Ann. Probab.12 (1984) 13-34. Zbl0572.60037MR723727
  5. [5] L. Birgé, P. Massart, Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields97 (1993) 113-150. Zbl0805.62037MR1240719
  6. [6] M.D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems, Ann. Math. Statist.23 (1952) 277-281. Zbl0046.35103
  7. [7] P. Doukhan, P. Massart, E. Rio, Invariance principle for absolutely regular processes, Ann. Institut H. Poincaré31 (1995) 393-427. Zbl0817.60028MR1324814
  8. [8] R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab.6 (1978) 899-929. Zbl0404.60016MR512411
  9. [9] R.M. Dudley, Donsker classes of functions, in: Csörgo&#x030B; M., Dawson D.A., Rao J.N.K., Saleh A.K.Md.E. (Eds.), Statistics and Related Topics, North-Holland, Amsterdam, 1981, pp. 341-352. Zbl0468.60009MR665285
  10. [10] M. Ledoux, M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, Springer, New York, 1991. Zbl0748.60004MR1102015
  11. [11] P. Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Institut H. Poincaré22 (1986) 381-423. Zbl0615.60032MR871904
  12. [12] M. Ossiander, A central limit theorem under metric entropy with L2 bracketing, Ann. Probab.15 (1987) 897-919. Zbl0665.60036MR893905
  13. [13] G. Pisier, Some applications of the metric entropy condition to harmonic analysis, in: Lecture Notes in Mathematics, 995, Springer, New York, 1983, pp. 123-154. Zbl0517.60043MR717231
  14. [14] D. Pollard, A User's Guide to Measure Theoretic Probability, Cambridge University Press, Cambridge, 2001. Zbl0992.60001
  15. [15] R. Pyke, A uniform central limit theorem for partial-sum processes indexed by sets, in: Kingman J.F.C., Reuter G.E.H. (Eds.), Probability, Statistics and Analysis, Cambridge University Press, Cambridge, 1983, pp. 219-240. Zbl0497.60030MR696030
  16. [16] E. Rio, Covariance inequalities for strongly mixing processes, Ann. Institut H. Poincaré29 (1993) 587-597. Zbl0798.60027MR1251142

NotesEmbed ?

top

You must be logged in to post comments.