Maximal inequalities via bracketing with adaptive truncation
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 6, page 1039-1052
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab.14 (1986) 582-597. Zbl0595.60027MR832025
- [2] N.T. Andersen, E. Giné, M. Ossiander, J. Zinn, The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Z. Wahrscheinlichkeitstheorie Verw. Geb.77 (1988) 271-306. Zbl0618.60022MR927241
- [3] R.F. Bass, Law of the iterated logarithm for set-indexed partial-sum processes with finite variance, Z. Wahrscheinlichkeitstheorie Verw. Geb.70 (1985) 591-608. Zbl0575.60034MR807339
- [4] R.F. Bass, R. Pyke, Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets, Ann. Probab.12 (1984) 13-34. Zbl0572.60037MR723727
- [5] L. Birgé, P. Massart, Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields97 (1993) 113-150. Zbl0805.62037MR1240719
- [6] M.D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems, Ann. Math. Statist.23 (1952) 277-281. Zbl0046.35103
- [7] P. Doukhan, P. Massart, E. Rio, Invariance principle for absolutely regular processes, Ann. Institut H. Poincaré31 (1995) 393-427. Zbl0817.60028MR1324814
- [8] R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab.6 (1978) 899-929. Zbl0404.60016MR512411
- [9] R.M. Dudley, Donsker classes of functions, in: Csörgő M., Dawson D.A., Rao J.N.K., Saleh A.K.Md.E. (Eds.), Statistics and Related Topics, North-Holland, Amsterdam, 1981, pp. 341-352. Zbl0468.60009MR665285
- [10] M. Ledoux, M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, Springer, New York, 1991. Zbl0748.60004MR1102015
- [11] P. Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Institut H. Poincaré22 (1986) 381-423. Zbl0615.60032MR871904
- [12] M. Ossiander, A central limit theorem under metric entropy with L2 bracketing, Ann. Probab.15 (1987) 897-919. Zbl0665.60036MR893905
- [13] G. Pisier, Some applications of the metric entropy condition to harmonic analysis, in: Lecture Notes in Mathematics, 995, Springer, New York, 1983, pp. 123-154. Zbl0517.60043MR717231
- [14] D. Pollard, A User's Guide to Measure Theoretic Probability, Cambridge University Press, Cambridge, 2001. Zbl0992.60001
- [15] R. Pyke, A uniform central limit theorem for partial-sum processes indexed by sets, in: Kingman J.F.C., Reuter G.E.H. (Eds.), Probability, Statistics and Analysis, Cambridge University Press, Cambridge, 1983, pp. 219-240. Zbl0497.60030MR696030
- [16] E. Rio, Covariance inequalities for strongly mixing processes, Ann. Institut H. Poincaré29 (1993) 587-597. Zbl0798.60027MR1251142