Conditional probabilities and permutahedron

František Matúš

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 4, page 687-701
  • ISSN: 0246-0203

How to cite

top

Matúš, František. "Conditional probabilities and permutahedron." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 687-701. <http://eudml.org/doc/77777>.

@article{Matúš2003,
author = {Matúš, František},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Conditional probability space; permutahedron; lattice of faces; ordered partition; manifolds in Euclidean spaces; algebraic variety; global inverse theorem},
language = {eng},
number = {4},
pages = {687-701},
publisher = {Elsevier},
title = {Conditional probabilities and permutahedron},
url = {http://eudml.org/doc/77777},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Matúš, František
TI - Conditional probabilities and permutahedron
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 687
EP - 701
LA - eng
KW - Conditional probability space; permutahedron; lattice of faces; ordered partition; manifolds in Euclidean spaces; algebraic variety; global inverse theorem
UR - http://eudml.org/doc/77777
ER -

References

top
  1. [1] A. von Arnim, R. Schrader, Y. Wang, The permutahedron of N-sparse posets, Math. Programming75 (1996) 1-18. Zbl0871.90039MR1415092
  2. [2] A. Björner, M. Las Vergnas, B. Sturmfels, W. White, G.M. Ziegler, Oriented Matroids, Cambridge University Press, Cambridge, 1993. Zbl0773.52001MR1226888
  3. [3] W.M. Boothy, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975. Zbl0333.53001MR426007
  4. [4] G. Coletti, R. Scozzafava, Probabilistic Logic in a Coherent Setting, Kluwer Academic, Dordrecht, 2002. Zbl1040.03017MR2042026
  5. [5] A. Császár, Sur la structure des espaces de probabilité conditionnelle, Acta Math. Acad. Sci. Hung.6 (1955) 337-361. Zbl0067.10402MR81009
  6. [6] B. de Finetti, Sull'impostazione assiomatica del calcolo delle probabilità, Annali Univ. Trieste19 (1949) 3-55. Zbl0036.20703
  7. [7] B. de Finetti, Probability, Induction and Statistics, Wiley, London, 1972. Zbl0275.60001
  8. [8] R.A. Horn, Ch.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. Zbl0576.15001MR832183
  9. [9] P.H. Krauss, Representation of conditional probability measures on Boolean algebras, Acta Math. Acad. Sci. Hung.19 (1968) 229-241. Zbl0174.49001MR236080
  10. [10] M. Maes, B. Kappen, On the permutahedron and the quadratic placement problem, Philips J. Res.46 (1992) 267-292. Zbl0756.90074MR1175346
  11. [11] T. Parthasarathy, On Global Univalence Theorems, Springer-Verlag, New York, 1983. Zbl0506.90001MR694845
  12. [12] M. Pouzet, K. Reuter, I. Rival, N. Zaguia, A generalized permutahedron, Algebra Universalis34 (1995) 496-509. Zbl0833.06004MR1357480
  13. [13] M. Radulescu, S. Radulescu, Global inversion theorems and applications to differential equations, Nonlinear Anal.4 (1980) 951-965. Zbl0441.46036MR586858
  14. [14] S. Radulescu, M. Radulescu, Global univalence and global inversion theorems in Banach spaces, Nonlinear Anal.13 (1989) 539-553. Zbl0745.58009MR993257
  15. [15] A. Rényi, On a new axiomatic theory of probability, Acta Math. Acad. Sci. Hung.6 (1955) 285-335. Zbl0067.10401MR81008
  16. [16] A. Rényi, On conditional probability spaces generated by a dimensionally ordered set of measures, Theory Probab. Appl.1 (1956) 55-64. Zbl0073.12302MR85639
  17. [17] A. Rényi, Sur les espace simples des Probabilités conditionnelles, Ann. Inst. Henri Poincaré, Probabilités et Statistiques1 (1964) 3-21. Zbl0135.18605MR182992
  18. [18] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest, 1970. 
  19. [19] A.S. Schulz, The permutahedron of series-parallel posets, Discrete Appl. Math.57 (1995) 85-90. Zbl0820.90058MR1317196
  20. [20] N.N. Vorobjev, D.K. Faddeyev, Continualization of conditinal probabilities, Theory Probab. Appl.6 (1961) 116-118. MR150792
  21. [21] F.F. Wu, Ch.A. Desoer, Global inverse function theorem, IEEE Trans. Circuit Theory19 (1972) 199-201. MR330375
  22. [22] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995. Zbl0823.52002MR1311028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.