An application of the voter model–super-brownian motion invariance principle

J. Theodore Cox; Edwin A. Perkins

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 1, page 25-32
  • ISSN: 0246-0203

How to cite

top

Cox, J. Theodore, and Perkins, Edwin A.. "An application of the voter model–super-brownian motion invariance principle." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 25-32. <http://eudml.org/doc/77796>.

@article{Cox2004,
author = {Cox, J. Theodore, Perkins, Edwin A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Voter model; Super-Brownian motion},
language = {eng},
number = {1},
pages = {25-32},
publisher = {Elsevier},
title = {An application of the voter model–super-brownian motion invariance principle},
url = {http://eudml.org/doc/77796},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Cox, J. Theodore
AU - Perkins, Edwin A.
TI - An application of the voter model–super-brownian motion invariance principle
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 25
EP - 32
LA - eng
KW - Voter model; Super-Brownian motion
UR - http://eudml.org/doc/77796
ER -

References

top
  1. [1] R. Arratia, Limiting point processes for rescaling of coalescing and annihilating random walks on Zd, Ann. Probab.9 (1981) 909-936. Zbl0496.60098MR632966
  2. [2] M. Bramson, J.T. Cox, J.-F. Le Gall, Super-Brownian limits of voter model clusters, Ann. Probab.29 (2001) 1001-1032. Zbl1029.60078MR1872733
  3. [3] M. Bramson, D. Griffeath, Asymptotics for interacting particle systems on Zd, Z. Wahrsch. Verw. Geb.53 (1980) 183-196. Zbl0417.60097MR580912
  4. [4] J.T. Cox, R. Durrett, E.A. Perkins, Rescaled voter models converge to super-Brownian motion, Ann. Probab.28 (2000) 185-234. Zbl1044.60092MR1756003
  5. [5] S.N. Ethier, T.G. Kurtz, Markov Process: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
  6. [6] T.M. Liggett, Interacting Particle Systems, Springer, New York, 1985. Zbl1103.82016MR776231
  7. [7] E.A. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in: Lectures on Probability Theory and Statistics; École d'Eté des Probabilités de St. Flour XXIX, 1999, Lecture Notes in Math., vol. 1781, Springer, 2002. Zbl1020.60075
  8. [8] S. Sawyer, A limit theorem for patch sizes in a selectively-neutral migration model, J. Appl. Probab.16 (1979) 482-495. Zbl0433.92017MR540786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.