Moments of passage times for Lévy processes

R. A. Doney; R. A. Maller

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 3, page 279-297
  • ISSN: 0246-0203

How to cite

top

Doney, R. A., and Maller, R. A.. "Moments of passage times for Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 40.3 (2004): 279-297. <http://eudml.org/doc/77811>.

@article{Doney2004,
author = {Doney, R. A., Maller, R. A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Passage times of Lévy processes; Horizontal boundaries; Curved boundaries; Drift to infinity; Renewal theorems; Local time; Ladder height processes; Strong laws},
language = {eng},
number = {3},
pages = {279-297},
publisher = {Elsevier},
title = {Moments of passage times for Lévy processes},
url = {http://eudml.org/doc/77811},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Doney, R. A.
AU - Maller, R. A.
TI - Moments of passage times for Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 3
SP - 279
EP - 297
LA - eng
KW - Passage times of Lévy processes; Horizontal boundaries; Curved boundaries; Drift to infinity; Renewal theorems; Local time; Ladder height processes; Strong laws
UR - http://eudml.org/doc/77811
ER -

References

top
  1. [1] J. Bertoin, An Introduction to Lévy Processes, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
  2. [2] N.H. Bingham, R.A. Doney, Asymptotic properties of super-critical branching processes, I: The Galton–Watson process, Adv. Appl. Probab.6 (1975) 711-731. Zbl0297.60044
  3. [3] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. Zbl0617.26001MR898871
  4. [4] R.A. Doney, Stochastic bounds for Lévy processes, Ann. Probab., in press. Zbl1046.60045MR2060308
  5. [5] R.A. Doney, R.A. Maller, Stability and attraction to normality for Lévy processes at zero and infinity, J. Theoret. Probab.15 (2002) 751-792. Zbl1015.60043MR1922446
  6. [6] K.B. Erickson, The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc.185 (1973) 371-381. Zbl0304.60016MR336806
  7. [7] S. Janson, Moments for first-passage and last-exit times, the minimum, and related quantities for random walks with positive drift, Adv. Appl. Probab.18 (1986) 865-879. Zbl0612.60060MR867090
  8. [8] H. Kesten, R.A. Maller, Two renewal theorems for general random walks tending to infinity, Probab. Theory Related Fields106 (1996) 1-38. Zbl0855.60080MR1408415
  9. [9] W.E. Pruitt, General one-sided laws of the iterated logarithm, Ann. Probab.9 (1981) 1-48. Zbl0462.60030MR606797
  10. [10] B.A. Rogozin, Local behaviour of processes with independent increments, Theor. Probab. Appl.13 (1968) 482-486. Zbl0177.21305MR242261
  11. [11] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999. Zbl0973.60001MR1739520
  12. [12] V. Vigon, Votre Lévy ramp-t-il?, J. London Math. Soc.65 (2002) 243-256. Zbl1016.60054MR1875147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.