Estimate of spectral gap for continuous gas
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 4, page 387-409
- ISSN: 0246-0203
Access Full Article
topHow to cite
topWu, Liming. "Estimate of spectral gap for continuous gas." Annales de l'I.H.P. Probabilités et statistiques 40.4 (2004): 387-409. <http://eudml.org/doc/77817>.
@article{Wu2004,
author = {Wu, Liming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poincaré inequality; Gibbs measures; birth and death processes},
language = {eng},
number = {4},
pages = {387-409},
publisher = {Elsevier},
title = {Estimate of spectral gap for continuous gas},
url = {http://eudml.org/doc/77817},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Wu, Liming
TI - Estimate of spectral gap for continuous gas
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 4
SP - 387
EP - 409
LA - eng
KW - Poincaré inequality; Gibbs measures; birth and death processes
UR - http://eudml.org/doc/77817
ER -
References
top- [1] C Ané, M Ledoux, On logarithmic Sobolev inequalities for continuous random walks on graphs, Probab. Theory Related Fields116 (2000) 573-602. Zbl0964.60063MR1757600
- [2] T Bodineau, B Heffler, The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal.166 (1) (1999) 168-178. Zbl0972.82035MR1704666
- [3] T Bodineau, B Heffler, Correlation, spectral gap and log-Sobolev inequalities for unbounded spin systems, in: Differential Equations and Math. Phys., Amer. Math. Soc, Providence, RI, 2000, pp. 51-66. Zbl1161.82306MR1764741
- [4] L Bertini, N Cancrini, F Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré PR38 (1) (2002) 91-108. Zbl0994.82054MR1899231
- [5] F Cesi, Quasi-factorisation of entropy and log-Sobolev inequalities for Gibbs random fields, Probab. Theory Related Fields120 (2001) 569-584. Zbl1086.82002MR1853483
- [6] P Dai Pra, A.M Paganoni, G Posta, Entropy inequalities for unbounded spin systems, Ann. Probab.30 (4) (2000) 1959-1976. Zbl1013.60076MR1944012
- [7] A Holley, D.W Stroock, Nearest neighbor birth and death processes on the real line, Acta Mathematica140 (1978) 103-154. Zbl0405.60090MR488380
- [8] O Kallenberg, Foundations of Modern Probability, Springer-Verlag, 1997. Zbl0892.60001MR1464694
- [9] F Martinelli, Lectures on Glauber dynamics for discrete spin models, in: Ecole d'Eté de Saint-Flour (1997), Lect. Notes in Math., vol. 1717, Springer, 1999, pp. 93-191. Zbl1051.82514MR1746301
- [10] M Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in: Séminaire de Probabilités, Lect. Notes Math., vol. 1755, Springer, 2001, pp. 167-194. Zbl0979.60096MR1837286
- [11] T.M Ligget, Interacting Particle Systems, Springer-Verlag, 1985. Zbl0559.60078
- [12] S.L Lu, H.T Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
- [13] Yu. Kondratiev, E. Lytvynov, Glauber dynamics of continuous particle systems, Preprint, 2003. Zbl1085.60074
- [14] Y.H Mao, Strong ergodicity for Markov processes by coupling method, J. Appl. Probab.39 (4) (2002) 839-852. Zbl1019.60077MR1938175
- [15] S Olla, C Tremoulet, Equilibrium fluctuations for interacting Ornstein–Uhlenbeck particles, Comm. Math. Phys. (2003). Zbl1013.82014
- [16] J Picard, Formule de dualité sur l'espace de Poisson, Ann. Inst. H. Poincaré (Prob. Stat.)32 (4) (1996) 509-548. Zbl0859.60045MR1411270
- [17] D Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, 1969. Zbl0177.57301MR289084
- [18] D.W Stroock, B Zegarlinski, The equivalence between the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition, Comm. Math. Phys.144 (1992) 303-323. Zbl0745.60104
- [19] D.W Stroock, B Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on the lattice, Comm. Math. Phys.149 (1992) 175-193. Zbl0758.60070MR1182416
- [20] D Surgailis, On the multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Stat.3 (1984) 217-239. Zbl0548.60058MR764148
- [21] L Wu, A new modified logarithmic Sobolev inequality for Poisson point processes and several applications, Probab. Theory Related Fields118 (2000) 427-438. Zbl0970.60093MR1800540
- [22] L Wu, Uniqueness of Nelson's diffusions, Probab. Theory Related Fields114 (1999) 549-585. Zbl0936.60072MR1709280
- [23] N Yoshida, The equivalence of the logarithmic Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. H. Poincaré (Prob. Stat.)37 (2001) 223-243. Zbl0992.60089MR1819124
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.