The spectral gap for a Glauber-type dynamics in a continuous gas
Lorenzo Bertini; Nicoletta Cancrini; Filippo Cesi
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 1, page 91-108
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBertini, Lorenzo, Cancrini, Nicoletta, and Cesi, Filippo. "The spectral gap for a Glauber-type dynamics in a continuous gas." Annales de l'I.H.P. Probabilités et statistiques 38.1 (2002): 91-108. <http://eudml.org/doc/77710>.
@article{Bertini2002,
author = {Bertini, Lorenzo, Cancrini, Nicoletta, Cesi, Filippo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {spectral gap; Gibbs measures; continuous systems; birth and death processes},
language = {eng},
number = {1},
pages = {91-108},
publisher = {Elsevier},
title = {The spectral gap for a Glauber-type dynamics in a continuous gas},
url = {http://eudml.org/doc/77710},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Bertini, Lorenzo
AU - Cancrini, Nicoletta
AU - Cesi, Filippo
TI - The spectral gap for a Glauber-type dynamics in a continuous gas
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 1
SP - 91
EP - 108
LA - eng
KW - spectral gap; Gibbs measures; continuous systems; birth and death processes
UR - http://eudml.org/doc/77710
ER -
References
top- [1] F Cesi, C Maes, F Martinelli, Relaxation of disordered magnets in the Griffiths regime, Comm. Math. Phys.188 (1997) 135-173. Zbl0882.60095MR1471335
- [2] E.B Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. Zbl0699.35006MR990239
- [3] R Fernández, P.A Ferrari, N.L Garcia, Perfect simulation for interacting point processes, loss networks and Ising models, Preprint, 1999. Zbl1075.60583MR1934155
- [4] M Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in: Séminaire de Probabilités, XXXV (Berlin), Springer, Berlin, 2001, pp. 167-194. Zbl0979.60096MR1837286
- [5] M Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probabilités, XXXIII, Lecture Notes in Mathematics, 1709, Springer, Berlin, 1999, pp. 120-216. Zbl0957.60016MR1767995
- [6] T.M Liggett, Interacting Particle Systems, Springer, Berlin, 1985. Zbl1103.82016MR776231
- [7] S.L Lu, H.T Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
- [8] F Martinelli, Lectures on Glauber dynamics for discrete spin models, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), Lecture Notes in Mathematics, 1717, Springer, Berlin, 1999, pp. 93-191. Zbl1051.82514MR1746301
- [9] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case, Comm. Math. Phys.161 (1994) 447. Zbl0793.60110MR1269387
- [10] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II: The general case, Comm. Math. Phys.161 (1994) 487. Zbl0793.60111MR1269388
- [11] K Matthes, J Kerstan, J Mecke, Infinitely Divisible Point Processes, Wiley, Chichester, 1978. Zbl0383.60001MR517931
- [12] C Preston, Spatial birth-and-death processes, Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Bull. Inst. Internat. Statist.46 (1975) 371-391. Zbl0379.60082MR474532
- [13] D Ruelle, Superstable interactions in classical statistical mechanics, Comm. Math. Phys.18 (1970) 127-159. Zbl0198.31101MR266565
- [14] H Spohn, Equilibrium fluctuations for interacting Brownian particles, Comm. Math. Phys.103 (1986) 1-33. Zbl0605.60092MR826856
- [15] D.W Stroock, B Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition, Comm. Math. Phys.144 (1992) 303-323. Zbl0745.60104
- [16] D.W Stroock, B Zegarlinski, The logarithmic Sobolev inequality for discrete spin on a lattice, Comm. Math. Phys.149 (1992) 175. Zbl0758.60070MR1182416
- [17] N Yoshida, The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. H. Poincaré Probab. Statist.37 (2) (2001) 223-243. Zbl0992.60089MR1819124
- [18] B Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys.175 (1996) 401-432. Zbl0844.46050MR1370101
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.