The spectral gap for a Glauber-type dynamics in a continuous gas

Lorenzo Bertini; Nicoletta Cancrini; Filippo Cesi

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 1, page 91-108
  • ISSN: 0246-0203

How to cite

top

Bertini, Lorenzo, Cancrini, Nicoletta, and Cesi, Filippo. "The spectral gap for a Glauber-type dynamics in a continuous gas." Annales de l'I.H.P. Probabilités et statistiques 38.1 (2002): 91-108. <http://eudml.org/doc/77710>.

@article{Bertini2002,
author = {Bertini, Lorenzo, Cancrini, Nicoletta, Cesi, Filippo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {spectral gap; Gibbs measures; continuous systems; birth and death processes},
language = {eng},
number = {1},
pages = {91-108},
publisher = {Elsevier},
title = {The spectral gap for a Glauber-type dynamics in a continuous gas},
url = {http://eudml.org/doc/77710},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Bertini, Lorenzo
AU - Cancrini, Nicoletta
AU - Cesi, Filippo
TI - The spectral gap for a Glauber-type dynamics in a continuous gas
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 1
SP - 91
EP - 108
LA - eng
KW - spectral gap; Gibbs measures; continuous systems; birth and death processes
UR - http://eudml.org/doc/77710
ER -

References

top
  1. [1] F Cesi, C Maes, F Martinelli, Relaxation of disordered magnets in the Griffiths regime, Comm. Math. Phys.188 (1997) 135-173. Zbl0882.60095MR1471335
  2. [2] E.B Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. Zbl0699.35006MR990239
  3. [3] R Fernández, P.A Ferrari, N.L Garcia, Perfect simulation for interacting point processes, loss networks and Ising models, Preprint, 1999. Zbl1075.60583MR1934155
  4. [4] M Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in: Séminaire de Probabilités, XXXV (Berlin), Springer, Berlin, 2001, pp. 167-194. Zbl0979.60096MR1837286
  5. [5] M Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probabilités, XXXIII, Lecture Notes in Mathematics, 1709, Springer, Berlin, 1999, pp. 120-216. Zbl0957.60016MR1767995
  6. [6] T.M Liggett, Interacting Particle Systems, Springer, Berlin, 1985. Zbl1103.82016MR776231
  7. [7] S.L Lu, H.T Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
  8. [8] F Martinelli, Lectures on Glauber dynamics for discrete spin models, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), Lecture Notes in Mathematics, 1717, Springer, Berlin, 1999, pp. 93-191. Zbl1051.82514MR1746301
  9. [9] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case, Comm. Math. Phys.161 (1994) 447. Zbl0793.60110MR1269387
  10. [10] F Martinelli, E Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II: The general case, Comm. Math. Phys.161 (1994) 487. Zbl0793.60111MR1269388
  11. [11] K Matthes, J Kerstan, J Mecke, Infinitely Divisible Point Processes, Wiley, Chichester, 1978. Zbl0383.60001MR517931
  12. [12] C Preston, Spatial birth-and-death processes, Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Bull. Inst. Internat. Statist.46 (1975) 371-391. Zbl0379.60082MR474532
  13. [13] D Ruelle, Superstable interactions in classical statistical mechanics, Comm. Math. Phys.18 (1970) 127-159. Zbl0198.31101MR266565
  14. [14] H Spohn, Equilibrium fluctuations for interacting Brownian particles, Comm. Math. Phys.103 (1986) 1-33. Zbl0605.60092MR826856
  15. [15] D.W Stroock, B Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition, Comm. Math. Phys.144 (1992) 303-323. Zbl0745.60104
  16. [16] D.W Stroock, B Zegarlinski, The logarithmic Sobolev inequality for discrete spin on a lattice, Comm. Math. Phys.149 (1992) 175. Zbl0758.60070MR1182416
  17. [17] N Yoshida, The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. H. Poincaré Probab. Statist.37 (2) (2001) 223-243. Zbl0992.60089MR1819124
  18. [18] B Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys.175 (1996) 401-432. Zbl0844.46050MR1370101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.