Regularity of formation of dust in self-similar fragmentations
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 4, page 411-438
- ISSN: 0246-0203
Access Full Article
topHow to cite
topHaas, Bénédicte. "Regularity of formation of dust in self-similar fragmentations." Annales de l'I.H.P. Probabilités et statistiques 40.4 (2004): 411-438. <http://eudml.org/doc/77818>.
@article{Haas2004,
author = {Haas, Bénédicte},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fragmentation; self-similarity; loss of mass to dust; Lebesgue density; Hölder continuity},
language = {eng},
number = {4},
pages = {411-438},
publisher = {Elsevier},
title = {Regularity of formation of dust in self-similar fragmentations},
url = {http://eudml.org/doc/77818},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Haas, Bénédicte
TI - Regularity of formation of dust in self-similar fragmentations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 4
SP - 411
EP - 438
LA - eng
KW - fragmentation; self-similarity; loss of mass to dust; Lebesgue density; Hölder continuity
UR - http://eudml.org/doc/77818
ER -
References
top- [1] D.J Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
- [2] E Artin, The Gamma Function, Holt, Rinehart, and Winston, New York, 1964. Zbl0144.06802MR165148
- [3] J Berestycki, Ranked fragmentations, ESAIM P&S6 (2002) 157-176. Zbl1001.60078MR1943145
- [4] J Bertoin, Subordinators: Examples and applications, in: Bernard P (Ed.), Lectures on Probability Theory and Statistics, Ecole d'été de probabilités de St-Flour XXVII, Lect. Notes in Maths., vol. 1717, Springer, Berlin, 1999, pp. 1-91. Zbl0955.60046MR1746300
- [5] J Bertoin, Homogeneous fragmentation processes, Probab. Theory Related Fields121 (3) (2001) 301-318. Zbl0992.60076MR1867425
- [6] J Bertoin, Self-similar fragmentations, Ann. Inst. Henri Poincaré38 (2002) 319-340. Zbl1002.60072MR1899456
- [7] J Bertoin, The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc.5 (2003) 395-416. Zbl1042.60042MR2017852
- [8] J Bertoin, On small masses in self-similar fragmentations, Stochastic Process. Applic.109 (2004) 13-22. Zbl1075.60092MR2024841
- [9] J Bertoin, M Yor, On subordinators, self-similar Markov processes and factorization of the exponential variable, Elect. Comm. Probab.6 (10) (2001) 95-106. Zbl1024.60030MR1871698
- [10] Beysens D, Campi X, Pefferkorn E (Eds.), Proceedings of the Workshop: Fragmentation Phenomena, Les Houches Series, World Scientific, 1995.
- [11] N.H Bingham, C.M Goldie, J.L Teugels, Regular Variation, Cambridge University Press, 1987. Zbl0617.26001MR898871
- [12] S Bochner, K Chandrasekharan, Fourier Transforms, Princeton University Press, 1949. Zbl0065.34101MR31582
- [13] P Carmona, F Petit, M Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in: Yor M (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matematica IberoAmericana, 1997, pp. 73-121. Zbl0905.60056MR1648657
- [14] K Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1986. Zbl0587.28004MR867284
- [15] A.F Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl.6 (1961) 275-294. Zbl0242.60050
- [16] N Fournier, J.S Giet, On small particles in coagulation-fragmentation equations, J. Statist. Phys.111 (5) (2003) 1299-1329. Zbl1018.60061MR1975930
- [17] B Haas, Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl.106 (2) (2003) 245-277. Zbl1075.60553MR1989629
- [18] B. Haas, G. Miermont, The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electron. J. Probab., submitted for publication. Zbl1064.60076MR2041829
- [19] I Jeon, Stochastic fragmentation and some sufficient conditions for shattering transitions, J. Korean Math. Soc.39 (4) (2002) 543-558. Zbl1002.60097MR1898911
- [20] J.F.C Kingman, The coalescent, Stochastic Process. Appl.13 (1982) 235-248. Zbl0491.60076MR671034
- [21] G Miermont, Self-similar fragmentations derived from the stable tree I: splitting at heights, Probab. Theory Related Fields127 (2003) 423-454. Zbl1042.60043MR2018924
- [22] D Revuz, M Yor, Continuous Martingales and Brownian Motion, Springer, 1998. Zbl0731.60002
- [23] K.-I Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. Zbl0973.60001MR1739520
- [24] E.M Stein, Singular Integrals and Differentiability Properties of Functionals, Princeton University Press, 1970. Zbl0207.13501MR290095
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.