Regularity of formation of dust in self-similar fragmentations

Bénédicte Haas

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 4, page 411-438
  • ISSN: 0246-0203

How to cite

top

Haas, Bénédicte. "Regularity of formation of dust in self-similar fragmentations." Annales de l'I.H.P. Probabilités et statistiques 40.4 (2004): 411-438. <http://eudml.org/doc/77818>.

@article{Haas2004,
author = {Haas, Bénédicte},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fragmentation; self-similarity; loss of mass to dust; Lebesgue density; Hölder continuity},
language = {eng},
number = {4},
pages = {411-438},
publisher = {Elsevier},
title = {Regularity of formation of dust in self-similar fragmentations},
url = {http://eudml.org/doc/77818},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Haas, Bénédicte
TI - Regularity of formation of dust in self-similar fragmentations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 4
SP - 411
EP - 438
LA - eng
KW - fragmentation; self-similarity; loss of mass to dust; Lebesgue density; Hölder continuity
UR - http://eudml.org/doc/77818
ER -

References

top
  1. [1] D.J Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
  2. [2] E Artin, The Gamma Function, Holt, Rinehart, and Winston, New York, 1964. Zbl0144.06802MR165148
  3. [3] J Berestycki, Ranked fragmentations, ESAIM P&S6 (2002) 157-176. Zbl1001.60078MR1943145
  4. [4] J Bertoin, Subordinators: Examples and applications, in: Bernard P (Ed.), Lectures on Probability Theory and Statistics, Ecole d'été de probabilités de St-Flour XXVII, Lect. Notes in Maths., vol. 1717, Springer, Berlin, 1999, pp. 1-91. Zbl0955.60046MR1746300
  5. [5] J Bertoin, Homogeneous fragmentation processes, Probab. Theory Related Fields121 (3) (2001) 301-318. Zbl0992.60076MR1867425
  6. [6] J Bertoin, Self-similar fragmentations, Ann. Inst. Henri Poincaré38 (2002) 319-340. Zbl1002.60072MR1899456
  7. [7] J Bertoin, The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc.5 (2003) 395-416. Zbl1042.60042MR2017852
  8. [8] J Bertoin, On small masses in self-similar fragmentations, Stochastic Process. Applic.109 (2004) 13-22. Zbl1075.60092MR2024841
  9. [9] J Bertoin, M Yor, On subordinators, self-similar Markov processes and factorization of the exponential variable, Elect. Comm. Probab.6 (10) (2001) 95-106. Zbl1024.60030MR1871698
  10. [10] Beysens D, Campi X, Pefferkorn E (Eds.), Proceedings of the Workshop: Fragmentation Phenomena, Les Houches Series, World Scientific, 1995. 
  11. [11] N.H Bingham, C.M Goldie, J.L Teugels, Regular Variation, Cambridge University Press, 1987. Zbl0617.26001MR898871
  12. [12] S Bochner, K Chandrasekharan, Fourier Transforms, Princeton University Press, 1949. Zbl0065.34101MR31582
  13. [13] P Carmona, F Petit, M Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in: Yor M (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matematica IberoAmericana, 1997, pp. 73-121. Zbl0905.60056MR1648657
  14. [14] K Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1986. Zbl0587.28004MR867284
  15. [15] A.F Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl.6 (1961) 275-294. Zbl0242.60050
  16. [16] N Fournier, J.S Giet, On small particles in coagulation-fragmentation equations, J. Statist. Phys.111 (5) (2003) 1299-1329. Zbl1018.60061MR1975930
  17. [17] B Haas, Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl.106 (2) (2003) 245-277. Zbl1075.60553MR1989629
  18. [18] B. Haas, G. Miermont, The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electron. J. Probab., submitted for publication. Zbl1064.60076MR2041829
  19. [19] I Jeon, Stochastic fragmentation and some sufficient conditions for shattering transitions, J. Korean Math. Soc.39 (4) (2002) 543-558. Zbl1002.60097MR1898911
  20. [20] J.F.C Kingman, The coalescent, Stochastic Process. Appl.13 (1982) 235-248. Zbl0491.60076MR671034
  21. [21] G Miermont, Self-similar fragmentations derived from the stable tree I: splitting at heights, Probab. Theory Related Fields127 (2003) 423-454. Zbl1042.60043MR2018924
  22. [22] D Revuz, M Yor, Continuous Martingales and Brownian Motion, Springer, 1998. Zbl0731.60002
  23. [23] K.-I Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. Zbl0973.60001MR1739520
  24. [24] E.M Stein, Singular Integrals and Differentiability Properties of Functionals, Princeton University Press, 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.