Self-similar fragmentations
Jean Bertoin (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Jean Bertoin (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
S. C. Harris, R. Knobloch, A. E. Kyprianou (2010)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than for 1≥>0.
Mustapha Mourragui, Enza Orlandi (2007)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
M. D. Jara, C. Landim (2008)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
For a sequence of i.i.d. random variables { : ∈ℤ} bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at (resp. +1) jumps to +1 (resp. ) at rate . We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder { : ∈ℤ}. We prove that the position of the tagged...
R. A. Doney, R. A. Maller (2004)
Annales de l'I.H.P. Probabilités et statistiques
Similarity: