Limit theorems for one-dimensional transient random walks in Markov environments

Eddy Mayer-Wolf; Alexander Roitershtein; Ofer Zeitouni

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 5, page 635-659
  • ISSN: 0246-0203

How to cite

top

Mayer-Wolf, Eddy, Roitershtein, Alexander, and Zeitouni, Ofer. "Limit theorems for one-dimensional transient random walks in Markov environments." Annales de l'I.H.P. Probabilités et statistiques 40.5 (2004): 635-659. <http://eudml.org/doc/77827>.

@article{Mayer2004,
author = {Mayer-Wolf, Eddy, Roitershtein, Alexander, Zeitouni, Ofer},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {RWRE; stable laws; branching; stochastic difference equations},
language = {eng},
number = {5},
pages = {635-659},
publisher = {Elsevier},
title = {Limit theorems for one-dimensional transient random walks in Markov environments},
url = {http://eudml.org/doc/77827},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Mayer-Wolf, Eddy
AU - Roitershtein, Alexander
AU - Zeitouni, Ofer
TI - Limit theorems for one-dimensional transient random walks in Markov environments
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 5
SP - 635
EP - 659
LA - eng
KW - RWRE; stable laws; branching; stochastic difference equations
UR - http://eudml.org/doc/77827
ER -

References

top
  1. [1] S. Alili, Asymptotic behavior for random walks in random environments, J. Appl. Probab.36 (1999) 334-349. Zbl0946.60046MR1724844
  2. [2] G. Alsmeyer, The Markov renewal theorem and related results, Markov Proc. Related Fields3 (1997) 103-127. Zbl0906.60052MR1446921
  3. [3] S. Asmussen, Applied Probability and Queues, Wiley, New York, 1987. Zbl0624.60098MR889893
  4. [4] K.B. Athreya, D. McDonald, P.E. Ney, Limit theorems for semi-Markov renewal theory for Markov chains, Ann. Probab.6 (1978) 809-814. Zbl0397.60052MR503952
  5. [5] K.B. Athreya, P.E. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc.245 (1978) 493-501. Zbl0397.60053MR511425
  6. [6] K.B. Athreya, P.E. Ney, A renewal approach to the Perron–Frobenius theory of nonnegative kernels on general state spaces, Math. Z.179 (1982) 507-529. Zbl0471.28010
  7. [7] J. Bremont, On some random walks on Z in random medium, Ann. Probab.30 (2002) 1266-1312. Zbl1021.60034MR1920108
  8. [8] A.A. Chernov, Replication of a multicomponent chain by the “lightning mechanism”, Biophysics12 (1967) 336-341. 
  9. [9] B. de Saporta, Tails of the stationary solution of the stochastic equation Yn+1=anYn+bn with Markovian coefficients, Stoch. Proc. Appl. (2004), in press. Zbl1096.60025
  10. [10] R. Durrett, Probability: Theory and Examples, Duxbury Press, Belmont, 1996. Zbl1202.60001MR1609153
  11. [11] B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Indpendent Random Variables, Addison-Wesley, Reading, MA, 1962. Zbl0056.36001MR62975
  12. [12] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab.1 (1991) 126-166. Zbl0724.60076MR1097468
  13. [13] H. Kesten, M.V. Kozlov, F. Spitzer, A limit law for random walk in a random environment, Comp. Math.30 (1975) 145-168. Zbl0388.60069MR380998
  14. [14] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta. Math.131 (1973) 208-248. Zbl0291.60029MR440724
  15. [15] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probab.2 (1974) 355-386. Zbl0303.60090MR365740
  16. [16] M. Kobus, Generalized Poisson distributions as limits of sums for arrays of dependent random vectors, J. Multivariate Anal.52 (1995) 199-244. Zbl0821.60032MR1323331
  17. [17] S.M. Kozlov, A random walk on the line with stochastic structure, Teoriya Veroyatnosti i Primeneniya18 (1973) 406-408. Zbl0299.60054MR319274
  18. [18] S.A. Molchanov, Lectures on Random Media, in: Lecture Notes in Mathematics, vol. 1581, Springer, New York, 1994. Zbl0814.60093MR1307415
  19. [19] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. Zbl0551.60066MR776608
  20. [20] A. Roitershtein, One-dimensional linear recursions with Markov-dependent coefficients, 2004, in preparation. 
  21. [21] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, 1994. Zbl0925.60027MR1280932
  22. [22] V.M. Shurenkov, On the theory of Markov renewal, Theor. Probab. Appl.29 (1984) 247-265. Zbl0557.60078MR749913
  23. [23] F. Solomon, Random walks in random environments, Ann. Probab.3 (1975) 1-31. Zbl0305.60029MR362503
  24. [24] Z. Szewczak, On a central limit theorem for m-dependent sequences, Bull. Polish Acad. Sci.36 (1988) 327-331. Zbl0759.60022MR1101677
  25. [25] A.S. Sznitman, Topics in random walks in random environment, 2002. Zbl1060.60102
  26. [26] C. Takacs, More randomness of environment does not always slow down a random walk, J. Theoret Probab.14 (3) (2001) 699-715. Zbl0989.60046MR1860519
  27. [27] D.E. Temkin, One-dimensional random walks in two-component chain, Soviet Math. Dokl.13 (5) (1972) 1172-1176. Zbl0276.60067MR314119
  28. [28] O. Zeitouni, Random walks in random environment, in: XXXI Summer School in Probability, St. Flour, 2001, Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004, pp. 193-312. Zbl1060.60103MR2071631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.