Limit theorems for one-dimensional transient random walks in Markov environments
Eddy Mayer-Wolf; Alexander Roitershtein; Ofer Zeitouni
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 5, page 635-659
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMayer-Wolf, Eddy, Roitershtein, Alexander, and Zeitouni, Ofer. "Limit theorems for one-dimensional transient random walks in Markov environments." Annales de l'I.H.P. Probabilités et statistiques 40.5 (2004): 635-659. <http://eudml.org/doc/77827>.
@article{Mayer2004,
author = {Mayer-Wolf, Eddy, Roitershtein, Alexander, Zeitouni, Ofer},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {RWRE; stable laws; branching; stochastic difference equations},
language = {eng},
number = {5},
pages = {635-659},
publisher = {Elsevier},
title = {Limit theorems for one-dimensional transient random walks in Markov environments},
url = {http://eudml.org/doc/77827},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Mayer-Wolf, Eddy
AU - Roitershtein, Alexander
AU - Zeitouni, Ofer
TI - Limit theorems for one-dimensional transient random walks in Markov environments
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 5
SP - 635
EP - 659
LA - eng
KW - RWRE; stable laws; branching; stochastic difference equations
UR - http://eudml.org/doc/77827
ER -
References
top- [1] S. Alili, Asymptotic behavior for random walks in random environments, J. Appl. Probab.36 (1999) 334-349. Zbl0946.60046MR1724844
- [2] G. Alsmeyer, The Markov renewal theorem and related results, Markov Proc. Related Fields3 (1997) 103-127. Zbl0906.60052MR1446921
- [3] S. Asmussen, Applied Probability and Queues, Wiley, New York, 1987. Zbl0624.60098MR889893
- [4] K.B. Athreya, D. McDonald, P.E. Ney, Limit theorems for semi-Markov renewal theory for Markov chains, Ann. Probab.6 (1978) 809-814. Zbl0397.60052MR503952
- [5] K.B. Athreya, P.E. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc.245 (1978) 493-501. Zbl0397.60053MR511425
- [6] K.B. Athreya, P.E. Ney, A renewal approach to the Perron–Frobenius theory of nonnegative kernels on general state spaces, Math. Z.179 (1982) 507-529. Zbl0471.28010
- [7] J. Bremont, On some random walks on Z in random medium, Ann. Probab.30 (2002) 1266-1312. Zbl1021.60034MR1920108
- [8] A.A. Chernov, Replication of a multicomponent chain by the “lightning mechanism”, Biophysics12 (1967) 336-341.
- [9] B. de Saporta, Tails of the stationary solution of the stochastic equation Yn+1=anYn+bn with Markovian coefficients, Stoch. Proc. Appl. (2004), in press. Zbl1096.60025
- [10] R. Durrett, Probability: Theory and Examples, Duxbury Press, Belmont, 1996. Zbl1202.60001MR1609153
- [11] B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Indpendent Random Variables, Addison-Wesley, Reading, MA, 1962. Zbl0056.36001MR62975
- [12] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab.1 (1991) 126-166. Zbl0724.60076MR1097468
- [13] H. Kesten, M.V. Kozlov, F. Spitzer, A limit law for random walk in a random environment, Comp. Math.30 (1975) 145-168. Zbl0388.60069MR380998
- [14] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta. Math.131 (1973) 208-248. Zbl0291.60029MR440724
- [15] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probab.2 (1974) 355-386. Zbl0303.60090MR365740
- [16] M. Kobus, Generalized Poisson distributions as limits of sums for arrays of dependent random vectors, J. Multivariate Anal.52 (1995) 199-244. Zbl0821.60032MR1323331
- [17] S.M. Kozlov, A random walk on the line with stochastic structure, Teoriya Veroyatnosti i Primeneniya18 (1973) 406-408. Zbl0299.60054MR319274
- [18] S.A. Molchanov, Lectures on Random Media, in: Lecture Notes in Mathematics, vol. 1581, Springer, New York, 1994. Zbl0814.60093MR1307415
- [19] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. Zbl0551.60066MR776608
- [20] A. Roitershtein, One-dimensional linear recursions with Markov-dependent coefficients, 2004, in preparation.
- [21] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, 1994. Zbl0925.60027MR1280932
- [22] V.M. Shurenkov, On the theory of Markov renewal, Theor. Probab. Appl.29 (1984) 247-265. Zbl0557.60078MR749913
- [23] F. Solomon, Random walks in random environments, Ann. Probab.3 (1975) 1-31. Zbl0305.60029MR362503
- [24] Z. Szewczak, On a central limit theorem for m-dependent sequences, Bull. Polish Acad. Sci.36 (1988) 327-331. Zbl0759.60022MR1101677
- [25] A.S. Sznitman, Topics in random walks in random environment, 2002. Zbl1060.60102
- [26] C. Takacs, More randomness of environment does not always slow down a random walk, J. Theoret Probab.14 (3) (2001) 699-715. Zbl0989.60046MR1860519
- [27] D.E. Temkin, One-dimensional random walks in two-component chain, Soviet Math. Dokl.13 (5) (1972) 1172-1176. Zbl0276.60067MR314119
- [28] O. Zeitouni, Random walks in random environment, in: XXXI Summer School in Probability, St. Flour, 2001, Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004, pp. 193-312. Zbl1060.60103MR2071631
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.