Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion

Michail Loulakis

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 2, page 237-254
  • ISSN: 0246-0203

How to cite

top

Loulakis, Michail. "Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion." Annales de l'I.H.P. Probabilités et statistiques 41.2 (2005): 237-254. <http://eudml.org/doc/77843>.

@article{Loulakis2005,
author = {Loulakis, Michail},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {237-254},
publisher = {Elsevier},
title = {Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion},
url = {http://eudml.org/doc/77843},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Loulakis, Michail
TI - Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 2
SP - 237
EP - 254
LA - eng
UR - http://eudml.org/doc/77843
ER -

References

top
  1. [1] P.A. Ferrari, S. Goldstein, J.L. Lebowitz, Diffusion, mobility and the Einstein relation, in: Fritz J., Jaffe A., Száz D. (Eds.), Statistical Physics and Dynamical Systems, Birkhäuser, Boston, 1985, pp. 405-441. Zbl0559.60065MR821308
  2. [2] M.Z. Guo, G.C. Papanicolaou, S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys.118 (1988) 31-59. Zbl0652.60107MR954674
  3. [3] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Grundlehren Math. Wiss., Springer-Verlag, 1999. Zbl0927.60002MR1707314
  4. [4] C. Kipnis, S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys.106 (1986) 1-19. Zbl0588.60058MR834478
  5. [5] T. Komorowski, S. Olla, On mobility and Einstein relation for tracers in time-mixing random environments, J. Statist. Phys., in press, preprint available at http://www.ceremade.dauphine.fr/~olla. Zbl1126.82331MR2123642
  6. [6] C. Landim, S. Olla, S.R.S. Varadhan, Finite dimensional approximation of the self-diffusion coefficient for the exclusion process, Ann. Probab.30 (2) (2002) 483-508. Zbl1018.60097MR1905849
  7. [7] C. Landim, S. Olla, S.R.S. Varadhan, Symmetric simple exclusion process: regularity of the self diffusion coefficient, Comm. Math. Phys.224 (1) (2001) 307-321. Zbl0994.60093MR1869001
  8. [8] C. Landim, S. Olla, S.R.S. Varadhan, Asymptotic behavior of a tagged particle in simple exclusion processes, Bol. Soc. Brasil. Mat. (N.S.)31 (3) (2000) 241-275. Zbl0983.60100MR1817088
  9. [9] C. Landim, S. Olla, S.B. Volchan, Driven tracer particle in 1 dimensional symmetric simple exclusion, Comm. Math. Phys.192 (2) (1998) 287-307. Zbl0911.60085MR1617558
  10. [10] C. Landim, H.T. Yau, Fluctuation-dissipation equation of asymmetric simple exclusion processes, Probab. Theory Related Fields108 (1997) 321-356. Zbl0884.60092MR1465163
  11. [11] J.L. Lebowitz, H. Rost, The Einstein relation for the displacement of a test particle in a random environment, Stochastic Process. Appl.54 (1994) 183-196. Zbl0812.60096MR1307334
  12. [12] T. Liggett, Interacting Particle Systems, Grundlehren Math. Wiss., Springer-Verlag, New York, 1985. Zbl0559.60078MR776231
  13. [13] M. Loulakis, Einstein relation for a tagged particle in simple exclusion processes, Comm. Math. Phys.229 (2) (2002) 347-367. Zbl1005.60098MR1923179
  14. [14] J. Quastel, Diffusion of color in the simple exclusion process, Comm. Pure Appl. Math.45 (6) (1992) 623-679. Zbl0769.60097MR1162368
  15. [15] E. Saada, A limit theorem for the position of a tagged particle in a simple exclusion process, Ann. Probab.15 (1987) 375-381. Zbl0617.60096MR877609
  16. [16] S. Sethuraman, H.T. Yau, S.R.S. Varadhan, Diffusive limit of a tagged particle in asymmetric simple exclusion processes, Comm. Pure Appl. Math.53 (2000) 972-1006. Zbl1029.60084MR1755948
  17. [17] R.M. Sued, Regularity properties of the diffusion coefficient for a mean zero exclusion process, IMPA Thesis, available at: http://www.preprint.impa.br. Zbl1073.60098
  18. [18] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. H. Poincaré Probab. Statist.31 (1995) 273-285. Zbl0816.60093MR1340041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.