Analysis of a Bose–Einstein Markov chain

Persi Diaconis

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 409-418
  • ISSN: 0246-0203

How to cite


Diaconis, Persi. "Analysis of a Bose–Einstein Markov chain." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 409-418. <>.

author = {Diaconis, Persi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov chains; Bose-Einstein; auxiliary variables; Arcsine law},
language = {eng},
number = {3},
pages = {409-418},
publisher = {Elsevier},
title = {Analysis of a Bose–Einstein Markov chain},
url = {},
volume = {41},
year = {2005},

AU - Diaconis, Persi
TI - Analysis of a Bose–Einstein Markov chain
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 409
EP - 418
LA - eng
KW - Markov chains; Bose-Einstein; auxiliary variables; Arcsine law
UR -
ER -


  1. [1] D. Aldous, J. Fill, Reversible Markov chains and random walks and graphs,, 2003. 
  2. [2] J. Besag, P. Green, Spatial statistics and Bayesian computation, J. Roy. Statist. Soc. Ser. B (1993) 25–37. Zbl0800.62572MR1210422
  3. [3] P. Billingsley, On the distribution of large prime divisors, Period. Math. Hungar2 (1972) 283-289. Zbl0242.10033MR335462
  4. [4] C. Borgs, J. Chayes, A. Frieze, J. Kim, P. Tetali, E. Vigoda, V. Vu, Torpid mixing of some Monte Carlo Markov chains in statistical physics, in: 40th Symp. Foundations of Computer Science, IEEE Comput. Soc., Los Alamaitos, CA, 1999, pp. 218-229. MR1917562
  5. [5] J. Brocas, M. Gielen, R. Willem, The Permutational Approach to Dynamical Sterochemistry, McGraw-Hill, New York, 1983. 
  6. [6] N.G. de Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics, Wiley, New York, 1968. Zbl0144.00601
  7. [7] R. Chen, A. Zame, Another arc sine law, Sankhyā43 (1981) 371-373. Zbl0526.62015MR665878
  8. [8] C. Dellacherie, P.A. Meyer, Probabilités et Potentiel, Herman, Paris, 1975. Zbl0323.60039MR488194
  9. [9] C. Dellacherie, P.A. Meyer, Probabilités et Potentiel : Theorie des Martingales, Herman, Paris, 1980. Zbl0464.60001MR566768
  10. [10] C. Dellacherie, P.A. Meyer, Probabilité et Potentiel : Theorie Discrete du Potentiel, Herman, Paris, 1983. Zbl0526.60001MR727641
  11. [11] W. Feller, An Introduction to Probability and its Applications, vol. 1, Wiley, New York, 1968. Zbl0039.13201MR228020
  12. [12] L. Goldberg, Automating Polya theory: the computational complexity of the cycle index polynomial, Info and Computation105 (1993) 268-288. Zbl0785.20004MR1226345
  13. [13] L. Goldberg, M. Jerrum, The Burnside process mixes slowly, Combinatorics, Probability, and Computing11 (2002) 21-34. Zbl1008.68085MR1888180
  14. [14] V. Goncharov, On the distribution of the cycles in permutations, Dokl. Akad. Nauk SSSR35 (1942) 229-310. 
  15. [15] V. Gore, M. Jerrum, The Swendsen–Wang process does not always mix rapidly, in: Proc. 29th Acm. Symp. Th. of Comput., 1997, pp. 674-681. Zbl0963.68216MR1753371
  16. [16] L. Hoist, Two conditioned limit theorems with applications, Ann. Statist.7 (1979) 551-557. Zbl0406.62008MR527490
  17. [17] M. Huber, Perfect sampling using bounding chains, Ann. Appl. Probab.14 (2004) 734-753. Zbl1052.60057MR2052900
  18. [18] M. Jerrum, Uniform sampling modulo a group of symmetries using Markov chain simulation, in: DIMACS Series Discrete Math., vol. 10, 1993, pp. 37-47. Zbl0814.68077MR1235566
  19. [19] M. Jerrum, Computational Polya-theory in surveys in combinatorics, in: London Math. Soc. Lecture Notes, vol. 218, Cambridge University Press, Cambridge, 1995, pp. 103-108. Zbl0833.20005MR1358633
  20. [20] J. Kemeny, L. Snell, Finite Markov Chains, Van Nostrand, New York, 1960. Zbl0089.13704MR115196
  21. [21] A. Kerber, Applied Finite Group Actions, Springer, Berlin, 1999. Zbl0951.05001MR1716962
  22. [22] S. Kerov, Transition probabilities for continual Young diagrams and Markov moment problems, Func. Anal. Appl.27 (1993) 104-117. Zbl0808.05098MR1251166
  23. [23] J. Liu, Monte Carlo Techniques in Scientific Computing, Springer, New York, 2001. MR1842342
  24. [24] P.A. Meyer, Probability and Potentials, Blaisdell, Walthan, MA, 1966. Zbl0138.10401MR205288
  25. [25] R. Neale, Slice sampling (with discussion), Ann. Statist.31 (2003) 705-767. Zbl1051.65007MR1994729
  26. [26] G. Polya, R. Read, Combinatorial Enumeration of Groups Graphs and Chemical Compounds, Springer, New York, 1987. MR884155
  27. [27] L. Shepp, S. Lloyd, Ordered cycle lengths in random permutations, Trans. Amer. Math. Soc.121 (1966) 340-357. Zbl0156.18705MR195117
  28. [28] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999. Zbl0928.05001MR1676282
  29. [29] M. Tanner, W. Wong, The calculation of posterior distributions using data augmentation, J. Amer. Statist. Asoc.82 (1987) 528-550. Zbl0619.62029MR898357

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.