Quantum stochastic convolution cocycles I
J. Martin Lindsay; Adam G. Skalski
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 3, page 581-604
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLindsay, J. Martin, and Skalski, Adam G.. "Quantum stochastic convolution cocycles I." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 581-604. <http://eudml.org/doc/77859>.
@article{Lindsay2005,
author = {Lindsay, J. Martin, Skalski, Adam G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {581-604},
publisher = {Elsevier},
title = {Quantum stochastic convolution cocycles I},
url = {http://eudml.org/doc/77859},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Lindsay, J. Martin
AU - Skalski, Adam G.
TI - Quantum stochastic convolution cocycles I
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 581
EP - 604
LA - eng
UR - http://eudml.org/doc/77859
ER -
References
top- [1] L. Accardi, On the quantum Feynman–Kac formula, Rend. Sem. Mat. Fis. Milano48 (1978) 135-180. Zbl0437.60030MR573541
- [2] L. Accardi, J.-L. Journé, J.M. Lindsay, On multidimensional Markovian cocycles, in: Accardi L., von Waldenfels W. (Eds.), Quantum Probability and Applications IV, Lecture Notes in Math., vol. 1396, Springer-Verlag, Berlin, 1989, pp. 59-67. Zbl0674.60064MR1019566
- [3] L. Accardi, A. Mohari, On the structure of classical and quantum flows, J. Funct. Anal.135 (2) (1996) 421-455. Zbl0837.60090MR1370609
- [4] W. Arveson, Noncommutative Dynamics and E-Semigroups, Springer-Verlag, New York, 2003. Zbl1032.46001MR1978577
- [5] L. Accardi, M. Schürmann, W. von Waldenfels, Quantum independent increment processes on superalgebras, Math. Z.198 (4) (1988) 451-477. Zbl0627.60014MR950578
- [6] D. Applebaum, B.V.R. Bhat, J. Kustermans, J.M. Lindsay, Quantum Independent Increment Processes I: From Classical Probability to Quantum Stochastics, Lecture Notes in Math., vol. 1865, Springer-Verlag, Heidelberg, 2005. Zbl1072.81039MR2132092
- [7] O.E. Barndorff-Nielsen, U. Franz, G. Gohm, B. Krümmerer, S. Thorbjørsen, Quantum Independent Increment Processes II: Structure of Quantum Lévy Processes, Classical Probability and Physics, U. Franz, M. Schürmann (Eds.), Lecture Notes in Math., vol. 1866, Springer-Verlag, Heidelberg, in press. MR2213451
- [8] W.S. Bradshaw, Stochastic cocycles as a characterisation of quantum flows, Bull. Sci. Math.116 (1) (1992) 1-34. Zbl0820.60096MR1154370
- [9] M.P. Evans, R.L. Hudson, Perturbations of quantum diffusions, J. London Math. Soc. (2)41 (2) (1990) 373-384. Zbl0719.60083MR1067276
- [10] F. Fagnola, Characterization of isometric and unitary weakly differentiable cocycles in Fock space, in: Accardi L. (Ed.), Quantum Probability and Related Topics VIII, World Scientific, Singapore, 1993, pp. 143-164. MR1258327
- [11] U. Franz, Lévy processes on quantum groups and dual groups, in [7]. Zbl1130.81046
- [12] U. Franz, R. Schott, Stochastic Processes and Operator Calculus on Quantum Groups, Math. Appl., vol. 490, Kluwer Academic, Dordrecht, 1999. Zbl0946.60005MR1746647
- [13] P. Glockner, Quantum stochastic differential equations on *-bialgebras, Math. Proc. Cambridge Philos. Soc.109 (3) (1991) 571-595. Zbl0747.60060MR1094755
- [14] D. Goswami, J.M. Lindsay, S.J. Wills, A stochastic Stinespring theorem, Math. Ann.319 (4) (2001) 647-673. Zbl0981.46052MR1825402
- [15] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math., vol. 267, Springer, Heidelberg, 1970. Zbl0265.43008MR493402
- [16] J. Hellmich, C. Köstler, B. Kümmerer, Noncommutative continuous Bernoulli shifts, Preprint, Queen's University, Kingston, 2004.
- [17] R.L. Hudson, Unitarity and multiplicativity via higher Itô product formula, Tatra Mt. Math. Publ.10 (1997) 95-108. Zbl0945.81016MR1469285
- [18] R.L. Hudson, J.M. Lindsay, On characterizing quantum stochastic evolutions, Math. Proc. Cambridge Philos. Soc.102 (2) (1987) 363-369. Zbl0644.46046MR898155
- [19] R.L. Hudson, K.R. Parthasarathy, Quantum Itô's formula and stochastic evolutions, Comm. Math. Phys.93 (3) (1984) 301-323. Zbl0546.60058MR745686
- [20] J.-L. Journé, Structure des cocycles markoviens sur l'espace de Fock, Probab. Theory Related Fields75 (2) (1987) 291-316. Zbl0595.60066MR885468
- [21] J. Kustermans, Locally compact quantum groups, in [6]. Zbl1072.46048
- [22] J. Kustermans, S. Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4)33 (6) (2000) 837-934. Zbl1034.46508MR1832993
- [23] J.M. Lindsay, Integral-sum kernel operators, in: Attal S., Lindsay J.M. (Eds.), Quantum Probability Communications XII, World Scientific, Singapore, 2003, pp. 1-21. Zbl1087.81034MR2032372
- [24] J.M. Lindsay, Quantum stochastic analysis — an introduction, in [6]. Zbl1072.81039
- [25] J.M. Lindsay, A.G. Skalski, Quantum stochastic convolution cocycles—algebraic and -algebraic, in: M. Bożejko, R. Lenczewski, W. Młotkowski, J. Wysoczański (Eds.), Quantum Probability and Related Topics, Banach Center Publications, Polish Academy of Sciences, Warsaw, 2005, in press. Zbl1103.81028
- [26] J.M. Lindsay, S.J. Wills, Existence, positivity, and contractivity for quantum stochastic flows with infinite dimensional noise, Probab. Theory Related Fields116 (4) (2000) 505-543. Zbl1079.81542MR1757598
- [27] J.M. Lindsay, S.J. Wills, Markovian cocycles on operator algebras, adapted to a Fock filtration, J. Funct. Anal.178 (2) (2000) 269-305. Zbl0969.60066MR1802896
- [28] J.M. Lindsay, S.J. Wills, Homomorphic Feller cocycles on a -algebra, J. London Math. Soc. (2)68 (1) (2003) 255-272. Zbl1033.46049
- [29] J.M. Lindsay, S.J. Wills, Operator Markovian cocycles via associated semigroups, Preprint, 2004.
- [30] H. Maassen, Quantum Markov processes on Fock space described by integral kernels, in: Accardi L., von Waldenfels W. (Eds.), Quantum Probability and Applications II, Lecture Notes in Math., vol. 1136, Springer-Verlag, Berlin, 1985, pp. 361-374. MR819517
- [31] P.-A. Meyer, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer-Verlag, Berlin, 1995. Zbl0877.60079MR1222649
- [32] K.R. Parthasarathy, Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992. Zbl0751.60046MR1164866
- [33] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990. Zbl0697.47048MR1056697
- [34] M. Schürmann, Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations, Probab. Theory Related Fields84 (4) (1990) 473-490. Zbl0685.60070MR1042061
- [35] M. Schürmann, White noise on involutive bialgebras, in: Quantum Probability & Related Topics VI, World Scientific, Singapore, 1991, pp. 401-419. Zbl0932.60104MR1149841
- [36] M. Schürmann, White Noise on Bialgebras, Lecture Notes in Math., vol. 1544, Springer, Heidelberg, 1993. Zbl0773.60100MR1238942
- [37] M. Schürmann, Operator processes majorizing their quadratic variation, Infin. Dimens. Anal. Quantum Probab. Relat. Top.3 (1) (2000) 99-120. Zbl1037.46503MR1810761
- [38] A.V. Skorohod, Operator stochastic differential equations and stochastic semigroups, Uspekhi Mat. Nauk37 (6) (1982) 157-183, (228) (in Russian), Russian Math. Surveys37 (6) (1982) 177-204. Zbl0519.60071MR683278
- [39] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1969. Zbl0194.32901MR252485
- [40] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys.111 (4) (1987) 613-665. Zbl0627.58034MR901157
- [41] S.L. Woronowicz, Compact quantum groups, in: Connes A., Gawedzki K., Zinn-Justin J. (Eds.), Symétries Quantiques, Proceedings, Les Houches, 1995, North-Holland, Amsterdam, 1998, pp. 845-884. Zbl0997.46045MR1616348
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.