Quantum stochastic convolution cocycles I

J. Martin Lindsay; Adam G. Skalski

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 581-604
  • ISSN: 0246-0203

How to cite

top

Lindsay, J. Martin, and Skalski, Adam G.. "Quantum stochastic convolution cocycles I." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 581-604. <http://eudml.org/doc/77859>.

@article{Lindsay2005,
author = {Lindsay, J. Martin, Skalski, Adam G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {581-604},
publisher = {Elsevier},
title = {Quantum stochastic convolution cocycles I},
url = {http://eudml.org/doc/77859},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Lindsay, J. Martin
AU - Skalski, Adam G.
TI - Quantum stochastic convolution cocycles I
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 581
EP - 604
LA - eng
UR - http://eudml.org/doc/77859
ER -

References

top
  1. [1] L. Accardi, On the quantum Feynman–Kac formula, Rend. Sem. Mat. Fis. Milano48 (1978) 135-180. Zbl0437.60030MR573541
  2. [2] L. Accardi, J.-L. Journé, J.M. Lindsay, On multidimensional Markovian cocycles, in: Accardi L., von Waldenfels W. (Eds.), Quantum Probability and Applications IV, Lecture Notes in Math., vol. 1396, Springer-Verlag, Berlin, 1989, pp. 59-67. Zbl0674.60064MR1019566
  3. [3] L. Accardi, A. Mohari, On the structure of classical and quantum flows, J. Funct. Anal.135 (2) (1996) 421-455. Zbl0837.60090MR1370609
  4. [4] W. Arveson, Noncommutative Dynamics and E-Semigroups, Springer-Verlag, New York, 2003. Zbl1032.46001MR1978577
  5. [5] L. Accardi, M. Schürmann, W. von Waldenfels, Quantum independent increment processes on superalgebras, Math. Z.198 (4) (1988) 451-477. Zbl0627.60014MR950578
  6. [6] D. Applebaum, B.V.R. Bhat, J. Kustermans, J.M. Lindsay, Quantum Independent Increment Processes I: From Classical Probability to Quantum Stochastics, Lecture Notes in Math., vol. 1865, Springer-Verlag, Heidelberg, 2005. Zbl1072.81039MR2132092
  7. [7] O.E. Barndorff-Nielsen, U. Franz, G. Gohm, B. Krümmerer, S. Thorbjørsen, Quantum Independent Increment Processes II: Structure of Quantum Lévy Processes, Classical Probability and Physics, U. Franz, M. Schürmann (Eds.), Lecture Notes in Math., vol. 1866, Springer-Verlag, Heidelberg, in press. MR2213451
  8. [8] W.S. Bradshaw, Stochastic cocycles as a characterisation of quantum flows, Bull. Sci. Math.116 (1) (1992) 1-34. Zbl0820.60096MR1154370
  9. [9] M.P. Evans, R.L. Hudson, Perturbations of quantum diffusions, J. London Math. Soc. (2)41 (2) (1990) 373-384. Zbl0719.60083MR1067276
  10. [10] F. Fagnola, Characterization of isometric and unitary weakly differentiable cocycles in Fock space, in: Accardi L. (Ed.), Quantum Probability and Related Topics VIII, World Scientific, Singapore, 1993, pp. 143-164. MR1258327
  11. [11] U. Franz, Lévy processes on quantum groups and dual groups, in [7]. Zbl1130.81046
  12. [12] U. Franz, R. Schott, Stochastic Processes and Operator Calculus on Quantum Groups, Math. Appl., vol. 490, Kluwer Academic, Dordrecht, 1999. Zbl0946.60005MR1746647
  13. [13] P. Glockner, Quantum stochastic differential equations on *-bialgebras, Math. Proc. Cambridge Philos. Soc.109 (3) (1991) 571-595. Zbl0747.60060MR1094755
  14. [14] D. Goswami, J.M. Lindsay, S.J. Wills, A stochastic Stinespring theorem, Math. Ann.319 (4) (2001) 647-673. Zbl0981.46052MR1825402
  15. [15] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math., vol. 267, Springer, Heidelberg, 1970. Zbl0265.43008MR493402
  16. [16] J. Hellmich, C. Köstler, B. Kümmerer, Noncommutative continuous Bernoulli shifts, Preprint, Queen's University, Kingston, 2004. 
  17. [17] R.L. Hudson, Unitarity and multiplicativity via higher Itô product formula, Tatra Mt. Math. Publ.10 (1997) 95-108. Zbl0945.81016MR1469285
  18. [18] R.L. Hudson, J.M. Lindsay, On characterizing quantum stochastic evolutions, Math. Proc. Cambridge Philos. Soc.102 (2) (1987) 363-369. Zbl0644.46046MR898155
  19. [19] R.L. Hudson, K.R. Parthasarathy, Quantum Itô's formula and stochastic evolutions, Comm. Math. Phys.93 (3) (1984) 301-323. Zbl0546.60058MR745686
  20. [20] J.-L. Journé, Structure des cocycles markoviens sur l'espace de Fock, Probab. Theory Related Fields75 (2) (1987) 291-316. Zbl0595.60066MR885468
  21. [21] J. Kustermans, Locally compact quantum groups, in [6]. Zbl1072.46048
  22. [22] J. Kustermans, S. Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4)33 (6) (2000) 837-934. Zbl1034.46508MR1832993
  23. [23] J.M. Lindsay, Integral-sum kernel operators, in: Attal S., Lindsay J.M. (Eds.), Quantum Probability Communications XII, World Scientific, Singapore, 2003, pp. 1-21. Zbl1087.81034MR2032372
  24. [24] J.M. Lindsay, Quantum stochastic analysis — an introduction, in [6]. Zbl1072.81039
  25. [25] J.M. Lindsay, A.G. Skalski, Quantum stochastic convolution cocycles—algebraic and C * -algebraic, in: M. Bożejko, R. Lenczewski, W. Młotkowski, J. Wysoczański (Eds.), Quantum Probability and Related Topics, Banach Center Publications, Polish Academy of Sciences, Warsaw, 2005, in press. Zbl1103.81028
  26. [26] J.M. Lindsay, S.J. Wills, Existence, positivity, and contractivity for quantum stochastic flows with infinite dimensional noise, Probab. Theory Related Fields116 (4) (2000) 505-543. Zbl1079.81542MR1757598
  27. [27] J.M. Lindsay, S.J. Wills, Markovian cocycles on operator algebras, adapted to a Fock filtration, J. Funct. Anal.178 (2) (2000) 269-305. Zbl0969.60066MR1802896
  28. [28] J.M. Lindsay, S.J. Wills, Homomorphic Feller cocycles on a C * -algebra, J. London Math. Soc. (2)68 (1) (2003) 255-272. Zbl1033.46049
  29. [29] J.M. Lindsay, S.J. Wills, Operator Markovian cocycles via associated semigroups, Preprint, 2004. 
  30. [30] H. Maassen, Quantum Markov processes on Fock space described by integral kernels, in: Accardi L., von Waldenfels W. (Eds.), Quantum Probability and Applications II, Lecture Notes in Math., vol. 1136, Springer-Verlag, Berlin, 1985, pp. 361-374. MR819517
  31. [31] P.-A. Meyer, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer-Verlag, Berlin, 1995. Zbl0877.60079MR1222649
  32. [32] K.R. Parthasarathy, Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992. Zbl0751.60046MR1164866
  33. [33] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990. Zbl0697.47048MR1056697
  34. [34] M. Schürmann, Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations, Probab. Theory Related Fields84 (4) (1990) 473-490. Zbl0685.60070MR1042061
  35. [35] M. Schürmann, White noise on involutive bialgebras, in: Quantum Probability & Related Topics VI, World Scientific, Singapore, 1991, pp. 401-419. Zbl0932.60104MR1149841
  36. [36] M. Schürmann, White Noise on Bialgebras, Lecture Notes in Math., vol. 1544, Springer, Heidelberg, 1993. Zbl0773.60100MR1238942
  37. [37] M. Schürmann, Operator processes majorizing their quadratic variation, Infin. Dimens. Anal. Quantum Probab. Relat. Top.3 (1) (2000) 99-120. Zbl1037.46503MR1810761
  38. [38] A.V. Skorohod, Operator stochastic differential equations and stochastic semigroups, Uspekhi Mat. Nauk37 (6) (1982) 157-183, (228) (in Russian), Russian Math. Surveys37 (6) (1982) 177-204. Zbl0519.60071MR683278
  39. [39] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1969. Zbl0194.32901MR252485
  40. [40] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys.111 (4) (1987) 613-665. Zbl0627.58034MR901157
  41. [41] S.L. Woronowicz, Compact quantum groups, in: Connes A., Gawedzki K., Zinn-Justin J. (Eds.), Symétries Quantiques, Proceedings, Les Houches, 1995, North-Holland, Amsterdam, 1998, pp. 845-884. Zbl0997.46045MR1616348

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.