Stochastic calculus and martingales on trees

Jean Picard

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 4, page 631-683
  • ISSN: 0246-0203

How to cite

top

Picard, Jean. "Stochastic calculus and martingales on trees." Annales de l'I.H.P. Probabilités et statistiques 41.4 (2005): 631-683. <http://eudml.org/doc/77861>.

@article{Picard2005,
author = {Picard, Jean},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {semimartingales on trees; martingales with jumps; coupling of diffusion; harmonic maps; energy},
language = {eng},
number = {4},
pages = {631-683},
publisher = {Elsevier},
title = {Stochastic calculus and martingales on trees},
url = {http://eudml.org/doc/77861},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Picard, Jean
TI - Stochastic calculus and martingales on trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 4
SP - 631
EP - 683
LA - eng
KW - semimartingales on trees; martingales with jumps; coupling of diffusion; harmonic maps; energy
UR - http://eudml.org/doc/77861
ER -

References

top
  1. [1] R. Abraham, L. Serlet, Poisson snake and fragmentation, Electron. J. Probab.7 (2002) 1-15, electronic. Zbl1015.60046MR1943890
  2. [2] M. Arnaudon, Barycentres convexes et approximations des martingales continues dans les variétés, in: Séminaire de Probabilités, XXIX, Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 70-85. Zbl0837.58037MR1459450
  3. [3] M. Arnaudon, Differentiable and analytic families of continuous martingales in manifolds with connection, Probab. Theory Related Fields108 (1997) 219-257. Zbl0883.60043MR1452557
  4. [4] M. Barlow, J. Pitman, M. Yor, On Walsh's Brownian motions, in: Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 275-293. Zbl0747.60072MR1022917
  5. [5] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, Studies in Mathematics, vol. 14, de Gruyter, 1991. Zbl0748.60046MR1133391
  6. [6] Z.Q. Chen, On reflected Dirichlet spaces, Probab. Theory Related Fields94 (2) (1992) 135-162. Zbl0767.60073MR1191106
  7. [7] R.W.R. Darling, Martingales in manifolds – Definition, examples and behaviour under maps, in: Azéma J., Yor M. (Eds.), Séminaire de Probabilités, XVI, Supplément: Géométrie différentielle stochastique, Lecture Notes in Math., vol. 921, Springer, Berlin, 1982, pp. 217-236. Zbl0482.58035MR658727
  8. [8] C. Dellacherie, P.A. Meyer, Probabilités et potentiel, Chapitres V à VIII, Hermann, 1980. Zbl0464.60001MR566768
  9. [9] J. Eells, B. Fuglede, Harmonic Maps between Riemannian Polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, Cambridge, 2001. Zbl0979.31001MR1848068
  10. [10] M. Émery, Stochastic Calculus in Manifolds, Universitext, Springer, 1989. Zbl0697.60060MR1030543
  11. [11] M. Émery, G. Mokobodzki, Sur le barycentre d'une probabilité dans une variété, in: Séminaire de Probabilités, XXV, Lecture Notes in Math., vol. 1485, Springer, Berlin, 1991, pp. 220-233. Zbl0753.60046MR1187782
  12. [12] M. Émery, W.A. Zheng, Fonctions convexes et semimartingales dans une variété, in: Seminar on Probability, XVIII, Lecture Notes in Math., vol. 1059, Springer, Berlin, 1984, pp. 501-518. Zbl0543.58029MR770977
  13. [13] S.N. Evans, Snakes and spiders: Brownian motion on R-trees, Probab. Theory Related Fields117 (3) (2000) 361-386. Zbl0959.60070MR1774068
  14. [14] M. Fukushima, Y. Ōshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  15. [15] J. Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations2 (2) (1994) 173-204. Zbl0798.58021MR1385525
  16. [16] J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer-Verlag, Berlin, 1995. Zbl0828.53002MR1351009
  17. [17] J. Jost, Generalized Dirichlet forms and harmonic maps, Calc. Var. Partial Differential Equations5 (1) (1997) 1-19. Zbl0868.31009MR1424346
  18. [18] W.S. Kendall, Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence, Proc. London Math. Soc.61 (3) (1990) 371-406. Zbl0675.58042MR1063050
  19. [19] W.S. Kendall, Probability, convexity and harmonic maps II: Smoothness via probabilistic gradient inequalities, J. Funct. Anal.126 (1) (1994) 226-257. Zbl0808.60058MR1305069
  20. [20] N.J. Korevaar, R.M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom.1 (3–4) (1993) 561-659. Zbl0862.58004MR1266480
  21. [21] W.B. Krebs, Brownian motion on the continuum tree, Probab. Theory Related Fields101 (3) (1995) 421-433. Zbl0822.60069MR1324094
  22. [22] J.-F. Le Gall, A class of path-valued Markov processes and its applications to superprocesses, Probab. Theory Related Fields95 (1) (1993) 25-46. Zbl0794.60076MR1207305
  23. [23] J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1999. Zbl0938.60003MR1714707
  24. [24] P.A. Meyer, Géométrie stochastique sans larmes, in: Azéma J., Yor M. (Eds.), Séminaire de Probabilités, XV, Lecture Notes in Math., vol. 850, Springer, Berlin, 1981, pp. 44-102. Zbl0459.60046MR622555
  25. [25] J. Picard, Martingales on Riemannian manifolds with prescribed limit, J. Funct. Anal.99 (2) (1991) 223-261. Zbl0758.60051MR1121614
  26. [26] J. Picard, Barycentres et martingales sur une variété, Ann. Inst. Henri Poincaré Probab. Stat.30 (4) (1994) 647-702. Zbl0817.58047MR1302764
  27. [27] J. Picard, Smoothness of harmonic maps for hypoelliptic diffusions, Ann. Probab.28 (2) (2000) 643-666. Zbl1044.58045MR1782269
  28. [28] J. Picard, The manifold valued Dirichlet problem for symmetric diffusions, Potential Anal.14 (2001) 53-72. Zbl0970.58022MR1810798
  29. [29] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1991. Zbl0731.60002MR1083357
  30. [30] C. Stricker, Semimartingales et valeur absolue, in: Séminaire de Probabilités, XIII, Lecture Notes in Math., vol. 721, Springer, Berlin, 1979, pp. 472-477. Zbl0408.60048MR544816
  31. [31] K.-T. Sturm, A semigroup approach to harmonic maps, preprint. MR2140797
  32. [32] K.-T. Sturm, Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature, Ann. Probab.30 (3) (2002) 1195-1222. Zbl1017.60050MR1920105
  33. [33] B. Tsirelson, Triple points: from non-Brownian filtrations to harmonic measures, Geom. Funct. Anal.7 (6) (1997) 1096-1142. Zbl0902.31004MR1487755
  34. [34] J. Walsh, A diffusion with a discontinuous local time, Astérisque52–53 (1978) 37-45. 
  35. [35] M. Yor, Some Aspects of Brownian Motion. Part II, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1997. Zbl0880.60082MR1442263

NotesEmbed ?

top

You must be logged in to post comments.