Martingales in manifolds. Definition, examples and behaviour under maps
Séminaire de probabilités de Strasbourg (1982)
- Volume: S16, page 217-236
Access Full Article
topHow to cite
topDarling, R. W. R.. "Martingales in manifolds. Definition, examples and behaviour under maps." Séminaire de probabilités de Strasbourg S16 (1982): 217-236. <http://eudml.org/doc/113423>.
@article{Darling1982,
author = {Darling, R. W. R.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {martingales in manifolds; stochastic process with values in a differential manifold with a linear connection; behaviour of martingales under harmonic maps and affine maps},
language = {eng},
pages = {217-236},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Martingales in manifolds. Definition, examples and behaviour under maps},
url = {http://eudml.org/doc/113423},
volume = {S16},
year = {1982},
}
TY - JOUR
AU - Darling, R. W. R.
TI - Martingales in manifolds. Definition, examples and behaviour under maps
JO - Séminaire de probabilités de Strasbourg
PY - 1982
PB - Springer - Lecture Notes in Mathematics
VL - S16
SP - 217
EP - 236
LA - eng
KW - martingales in manifolds; stochastic process with values in a differential manifold with a linear connection; behaviour of martingales under harmonic maps and affine maps
UR - http://eudml.org/doc/113423
ER -
References
top- [1] Bernard, A., Campbell, E.A., & Davie, A.M.. Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, 29.1 (1979), 207-228 Zbl0386.30029
- [2] Darling, R.W.R.Approximating Ito integrals of differential forms, and mean forward derivatives. (1981) To appear. MR736146
- [3] Darling, R.W.R.A Girsanov theorem for diffusions on a manifold (1981) To appear.
- [4] Eells, J. & Lemaire, L.A report on harmonic maps. Bull. London Math. Soc.10 (1978), pp. 1-68. Zbl0401.58003
- [5] Eliasson, H.I.Geometry of manifolds of maps. J.Differential GeometryI (1967), 169-194 Zbl0163.43901MR226681
- [6] Fuglede, B.Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier28.2 (1978), 107-144 Zbl0339.53026MR499588
- [7] Greene, R.E. & Wu H., Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier25 (1975) 215-235 Zbl0307.31003
- [8] Ishihara, ToruA mapping of Riemannian manifolds which preserves harmonic functions. J.Math. Kyoto Univ19-2 (1979) 215-229 Zbl0421.31006MR545705
- [9] Kendall, W.S.Brownian motion and a generalized little Picard theorem. To appear 1982. Zbl0507.58017MR682729
- [10] Kobayashi, S., & Nomizu, K.Foundation of differential geometry, Vols I and II, Interscience, New York (1963, 1969) Zbl0119.37502
- [11] Meyer, P.A.Géometrie stochastique sans larmes. Sem. de Probabilités XV, 1979/1980, SpringerLNM850, pp. 44-102. Zbl0459.60046MR622555
- [12] Meyer, P.A.A differential geometric formalism for the Ito calculus. SpringerLNM851 (1981) 256-270 Zbl0457.60031MR620993
- [13] Schwartz, L.Semi-martingales sur des variétés, et martingales conformes. (1980) SpringerLNM780. Zbl0433.60047MR575167
Citations in EuDML Documents
top- Jean Picard, Martingales sur le cercle
- Michel Émery, Wei-An Zheng, Fonctions convexes et semimartingales dans une variété
- Michel Émery, Gabriel Mokobodzki, Sur le barycentre d'une probabilité dans une variété
- R. W. R. Darling, Convergence of martingales on manifolds of negative curvature
- Jean Picard, Calcul stochastique avec sauts sur une variété
- M. Hakim-Dowek, Dominique Lépingle, L'exponentielle stochastique des groupes de Lie
- Jean Picard, Barycentres et martingales sur une variété
- Jean Picard, Stochastic calculus and martingales on trees
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.