The voter model with anti-voter bonds

Nina Gantert; Matthias Löwe; Jeffrey E. Steif

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 4, page 767-780
  • ISSN: 0246-0203

How to cite

top

Gantert, Nina, Löwe, Matthias, and Steif, Jeffrey E.. "The voter model with anti-voter bonds." Annales de l'I.H.P. Probabilités et statistiques 41.4 (2005): 767-780. <http://eudml.org/doc/77866>.

@article{Gantert2005,
author = {Gantert, Nina, Löwe, Matthias, Steif, Jeffrey E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {767-780},
publisher = {Elsevier},
title = {The voter model with anti-voter bonds},
url = {http://eudml.org/doc/77866},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Gantert, Nina
AU - Löwe, Matthias
AU - Steif, Jeffrey E.
TI - The voter model with anti-voter bonds
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 4
SP - 767
EP - 780
LA - eng
UR - http://eudml.org/doc/77866
ER -

References

top
  1. [1] P. Donnelly, D. Welsh, The antivoter problem: random 2-colourings of graphs, in: Graph Theory and Combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 133-144. Zbl0579.60097MR777170
  2. [2] R. Durrett, Lecture Notes on Particle Systems and Percolation, The Wadsworth & Brooks, 1988. Zbl0659.60129MR940469
  3. [3] M. Krishnapur, Y. Peres, Recurrent graphs where two independent random walks collide finitely often, Preprint. Zbl1060.60044MR2081461
  4. [4] T.M. Liggett, A characterization of the invariant measures for an infinite particle system with interactions. II, Trans. Amer. Math. Soc.198 (1974) 201-213. Zbl0364.60118MR375531
  5. [5] T.M. Liggett, Interacting Particle Systems, Springer-Verlag, 1985. Zbl0559.60078MR776231
  6. [6] N.S. Matloff, Ergodicity conditions for a dissonant voting model, Ann. Probab.5 (1977) 371-386. Zbl0364.60119MR445646
  7. [7] N.S. Matloff, A dissonant voting model: nonergodic case, Z. Wahrsch. Verw. Gebiete51 (1980) 63-78. Zbl0426.60093MR566109
  8. [8] E. Saada, Un modèle du votant en milieu aléatoire, Ann. Inst. H. Poincaré Probab. Statist.31 (1995) 263-271. Zbl0824.60101MR1340040
  9. [9] G. Winkler, Image Analysis, Random Fields and Dynamical Monte Carlo Methods, Applications of Mathematics, vol. 27, Springer, 1995. Zbl0821.68125MR1316400

NotesEmbed ?

top

You must be logged in to post comments.