The voter model with anti-voter bonds
Nina Gantert; Matthias Löwe; Jeffrey E. Steif
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 4, page 767-780
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] P. Donnelly, D. Welsh, The antivoter problem: random 2-colourings of graphs, in: Graph Theory and Combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 133-144. Zbl0579.60097MR777170
- [2] R. Durrett, Lecture Notes on Particle Systems and Percolation, The Wadsworth & Brooks, 1988. Zbl0659.60129MR940469
- [3] M. Krishnapur, Y. Peres, Recurrent graphs where two independent random walks collide finitely often, Preprint. Zbl1060.60044MR2081461
- [4] T.M. Liggett, A characterization of the invariant measures for an infinite particle system with interactions. II, Trans. Amer. Math. Soc.198 (1974) 201-213. Zbl0364.60118MR375531
- [5] T.M. Liggett, Interacting Particle Systems, Springer-Verlag, 1985. Zbl0559.60078MR776231
- [6] N.S. Matloff, Ergodicity conditions for a dissonant voting model, Ann. Probab.5 (1977) 371-386. Zbl0364.60119MR445646
- [7] N.S. Matloff, A dissonant voting model: nonergodic case, Z. Wahrsch. Verw. Gebiete51 (1980) 63-78. Zbl0426.60093MR566109
- [8] E. Saada, Un modèle du votant en milieu aléatoire, Ann. Inst. H. Poincaré Probab. Statist.31 (1995) 263-271. Zbl0824.60101MR1340040
- [9] G. Winkler, Image Analysis, Random Fields and Dynamical Monte Carlo Methods, Applications of Mathematics, vol. 27, Springer, 1995. Zbl0821.68125MR1316400