Ergodic behaviour of “signed voter models”
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 13-35
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMaillard, G., and Mountford, T. S.. "Ergodic behaviour of “signed voter models”." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 13-35. <http://eudml.org/doc/271955>.
@article{Maillard2013,
abstract = {We answer some questions raised by Gantert, Löwe and Steif (Ann. Inst. Henri Poincaré Probab. Stat.41(2005) 767–780) concerning “signed” voter models on locally finite graphs. These are voter model like processes with the difference that the edges are considered to be either positive or negative. If an edge between a site $x$ and a site $y$ is negative (respectively positive) the site $y$ will contribute towards the flip rate of $x$ if and only if the two current spin values are equal (respectively opposed).},
author = {Maillard, G., Mountford, T. S.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {particle system; voter model; random walk; coupling},
language = {eng},
number = {1},
pages = {13-35},
publisher = {Gauthier-Villars},
title = {Ergodic behaviour of “signed voter models”},
url = {http://eudml.org/doc/271955},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Maillard, G.
AU - Mountford, T. S.
TI - Ergodic behaviour of “signed voter models”
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 13
EP - 35
AB - We answer some questions raised by Gantert, Löwe and Steif (Ann. Inst. Henri Poincaré Probab. Stat.41(2005) 767–780) concerning “signed” voter models on locally finite graphs. These are voter model like processes with the difference that the edges are considered to be either positive or negative. If an edge between a site $x$ and a site $y$ is negative (respectively positive) the site $y$ will contribute towards the flip rate of $x$ if and only if the two current spin values are equal (respectively opposed).
LA - eng
KW - particle system; voter model; random walk; coupling
UR - http://eudml.org/doc/271955
ER -
References
top- [1] R. Durrett. Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont, CA, 1988. Zbl0659.60129MR940469
- [2] R. Durrett. Probability: Theory and Examples, 3rd edition. Duxbury, North Scituate, MA, 2005. Zbl1202.60002MR1609153
- [3] A. Dvoretzky, P. Erdös and S. Kakutani. Double points of paths of Brownian motion in -space. Acta Sci. Math.12 (1950) 75–81. Zbl0036.09001MR34972
- [4] N. Gantert, M. Löwe and J. Steif. The voter model with anti-voter bonds. Ann. Inst. Henri Poincaré Probab. Stat.41 (2005) 767–780. Zbl1070.60087MR2144233
- [5] G. Lawler. Intersections of Random Walks. Birkhäuser Boston, Cambridge, 1996. Zbl1228.60004MR2985195
- [6] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. Zbl0559.60078MR776231
- [7] N. S. Matloff. Ergodicity conditions for a dissonant voting model. Ann. Probab.5 (1977) 371–386. Zbl0364.60119MR445646
- [8] T. Mountford. A coupling of infinite particle systems. J. Math Kyoto Univ.35 (1995) 43–52. Zbl0840.60097MR1317272
- [9] E. Saada. Un modèle du votant en milieu aléatoire. Ann. Inst. Henri Poincaré Probab. Stat.31 (1995) 263–271. Zbl0824.60101MR1340040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.