Forward estimation for ergodic time series

Gusztáv Morvai; Benjamin Weiss

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 5, page 859-870
  • ISSN: 0246-0203

How to cite

top

Morvai, Gusztáv, and Weiss, Benjamin. "Forward estimation for ergodic time series." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 859-870. <http://eudml.org/doc/77871>.

@article{Morvai2005,
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stationary processes},
language = {eng},
number = {5},
pages = {859-870},
publisher = {Elsevier},
title = {Forward estimation for ergodic time series},
url = {http://eudml.org/doc/77871},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Forward estimation for ergodic time series
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 859
EP - 870
LA - eng
KW - stationary processes
UR - http://eudml.org/doc/77871
ER -

References

top
  1. [1] P. Algoet, Universal schemes for prediction, gambling and portfolio selection, Ann. Probab.20 (1992) 901-941, Correction, Ann. Probab.23 (1995) 474-478. Zbl0758.90006MR1159579
  2. [2] P. Algoet, The strong low of large numbers for sequential decisions under uncertainty, IEEE Trans. Inform. Theory40 (1994) 609-634. Zbl0827.62077MR1295308
  3. [3] P. Algoet, Universal schemes for learning the best nonlinear predictor given the infinite past and side information, IEEE Trans. Inform. Theory45 (1999) 1165-1185. Zbl0959.62078MR1686250
  4. [4] K. Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J.37 (1967) 357-367. Zbl0178.21103MR221571
  5. [5] D.H. Bailey, Sequential Schemes for Classifying and Predicting Ergodic Processes, Ph.D. thesis, Stanford University, 1976. 
  6. [6] T.M. Cover, Open problems in information theory, in: 1975 IEEE Joint Workshop on Information Theory, IEEE Press, New York, 1975, pp. 35-36. MR469507
  7. [7] R.M. Gray, Probability, Random Processes, and Ergodic Properties, Springer-Verlag, New York, 1988. Zbl0644.60001MR918767
  8. [8] L. Györfi, M. Kohler, A. Krzyżak, H. Walk, A Distribution Free Theory of Nonparametric Regression, Springer-Verlag, New York, 2002. Zbl1021.62024MR1920390
  9. [9] L. Györfi, G. Lugosi, Strategies for sequential prediction of stationary time series, in: Dror M., L'Ecuyer P., Szidarovszky F. (Eds.), Modeling Uncertainty an Examination of Stochastic Theory, Methods, and Applications, Kluwer Academic, 2002, pp. 225-248. MR1893282
  10. [10] L. Györfi, G. Lugosi, G. Morvai, A simple randomized algorithm for consistent sequential prediction of ergodic time series, IEEE Trans. Inform. Theory45 (1999) 2642-2650. Zbl0951.62080MR1725166
  11. [11] L. Györfi, G. Morvai, S. Yakowitz, Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory44 (1998) 886-892. Zbl0899.62122MR1607704
  12. [12] S. Kalikow, Random Markov processes and uniform martingales, Israel J. Math.71 (1990) 33-54. Zbl0711.60041MR1074503
  13. [13] M. Keane, Strongly mixing g-measures, Invent. Math.16 (1972) 309-324. Zbl0241.28014MR310193
  14. [14] Ph.T. Maker, The ergodic theorem for a sequence of functions, Duke Math. J.6 (1940) 27-30. Zbl0027.07705MR2028JFM66.1286.01
  15. [15] G. Morvai, Estimation of conditional distribution for stationary time series, Ph.D. thesis, Technical University of Budapest, 1994. 
  16. [16] G. Morvai, Guessing the output of a stationary binary time series, in: Haitovsky Y., Lerche H.R., Ritov Y. (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. Zbl05280104MR2017826
  17. [17] G. Morvai, B. Weiss, Forecasting for stationary binary time series, Acta Appl. Math.79 (2003) 25-34. Zbl1030.62076MR2021874
  18. [18] G. Morvai, S. Yakowitz, P. Algoet, Weakly convergent nonparametric forecasting of stationary time series, IEEE Trans. Inform. Theory43 (1997) 483-498. Zbl0871.62082MR1447529
  19. [19] G. Morvai, S. Yakowitz, L. Györfi, Nonparametric inferences for ergodic, stationary time series, Ann. Statist.24 (1996) 370-379. Zbl0855.62076MR1389896
  20. [20] D.S. Ornstein, Guessing the next output of a stationary process, Israel J. Math.30 (1978) 292-296. Zbl0386.60032MR508271
  21. [21] D.S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, 1974. Zbl0296.28016MR447525
  22. [22] B.Ya. Ryabko, Prediction of random sequences and universal coding, Problems Inform. Transmission24 (April–June 1988) 87-96. Zbl0666.94009MR955983
  23. [23] P.C. Shields, Cutting and stacking: a method for constructing stationary processes, IEEE Trans. Inform. Theory37 (1991) 1605-1614. Zbl0741.94007MR1134300
  24. [24] B. Weiss, Single Orbit Dynamics, American Mathematical Society, 2000. Zbl1083.37500MR1727510

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.