Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs

Sara Brofferio[1]; Wolfgang Woess

  • [1] Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 6, page 1101-1123
  • ISSN: 0246-0203

How to cite

top

Brofferio, Sara, and Woess, Wolfgang. "Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 1101-1123. <http://eudml.org/doc/77880>.

@article{Brofferio2005,
affiliation = {Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)},
author = {Brofferio, Sara, Woess, Wolfgang},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {wreath product; harmonic functions},
language = {eng},
number = {6},
pages = {1101-1123},
publisher = {Elsevier},
title = {Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs},
url = {http://eudml.org/doc/77880},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Brofferio, Sara
AU - Woess, Wolfgang
TI - Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 1101
EP - 1123
LA - eng
KW - wreath product; harmonic functions
UR - http://eudml.org/doc/77880
ER -

References

top
  1. [1] M. Barlow, Some remarks on the elliptic Harnack inequality, Bull. London Math. Soc.37 (2005) 200-208. Zbl1067.31002MR2119019
  2. [2] L. Bartholdi, W. Woess, Spectral computations on lamplighter groups and Diestel–Leader graphs, J. Fourier Analysis Appl.11 (2005) 175-202. Zbl1082.05058MR2131635
  3. [3] D. Bertacchi, Random walks on Diestel–Leader graphs, Abh. Math. Sem. Univ. Hamburg71 (2001) 205-224. Zbl0992.60052MR1873044
  4. [4] P. Cartier, Fonctions harmoniques sur un arbre, Symposia Math.9 (1972) 203-270. Zbl0283.31005MR353467
  5. [5] D.I. Cartwright, V.A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst Fourier (Grenoble)44 (1994) 1243-1288. Zbl0809.60010MR1306556
  6. [6] Th. Delmotte, Graphs between the elliptic and parabolic Harnack inequalities, Potential Anal.16 (2002) 151-168. Zbl1081.39012MR1881595
  7. [7] W. Dicks, Th. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata93 (2002) 121-137. Zbl1021.47014MR1934693
  8. [8] R. Diestel, I. Leader, A conjecture concerning a limit of non-Cayley graphs, J. Algebraic Combin.14 (2001) 17-25. Zbl0985.05020MR1856226
  9. [9] J.L. Doob, Discrete potential theory and boundaries, J. Math. Mech.8 (1959) 433-458. Zbl0101.11503MR107098
  10. [10] E.B. Dynkin, Boundary theory of Markov processes (the discrete case), Russian Math. Surveys24 (1969) 1-42. Zbl0222.60048MR245096
  11. [11] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl.2 (1961) 399-402. Zbl0214.44101
  12. [12] A.G. Erschler, On the asymptotics of the rate of departure to infinity, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI)283 (2001) 251-257, 263 (in Russian). Zbl1069.60043MR1879073
  13. [13] R.I. Grigorchuk, A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata87 (2001) 209-244. Zbl0990.60049MR1866850
  14. [14] A. Grigor'yan, A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann.324 (2002) 521-556. Zbl1011.60021MR1938457
  15. [15] W. Hebisch, L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble)51 (2001) 1437-1481. Zbl0988.58007MR1860672
  16. [16] G.A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math.4 (1960) 313-340. Zbl0094.32103MR123364
  17. [17] V.A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, in: Heyer H. (Ed.), Probability Measures on Groups X, Plenum, New York, 1991, pp. 205-238. Zbl0823.60006MR1178986
  18. [18] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab.11 (1983) 457-490. Zbl0641.60009MR704539
  19. [19] J.G. Kemeny, J.L. Snell, Finite Markov Chains, Springer, New York, 1976. Zbl0328.60035MR410929
  20. [20] R. Lyons, R. Pemantle, Y. Peres, Random walks on the lamplighter group, Ann. Probab.24 (1996) 1993-2006. Zbl0879.60004MR1415237
  21. [21] M.A. Picardello, W. Woess, Examples of stable Martin boundaries of Markov chains, in: Kishi M. (Ed.), Potential Theory, de Gruyter, Berlin, 1990, pp. 261-270. Zbl0758.60076MR1167242
  22. [22] C. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 293-316. Zbl0934.43001MR1714851
  23. [23] C. Pittet, L. Saloff-Coste, On random walks on wreath products, Ann. Probab.30 (2002) 948-977. Zbl1021.60004MR1905862
  24. [24] D. Revelle, Rate of escape of random walks on wreath products, Ann. Probab.31 (2003) 1917-1934. Zbl1051.60047MR2016605
  25. [25] D. Revelle, Heat kernel asymptotics on the lamplighter group, Electronic Comm. Probab.8 (2003) 142-154. Zbl1061.60112MR2042753
  26. [26] L. Saloff-Coste, W. Woess, Transition operators, groups, norms, and spectral radii, Pacific J. Math.180 (1997) 333-367. Zbl0899.60005MR1487568
  27. [27] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, Cambridge, 2000. Zbl0951.60002MR1743100
  28. [28] W. Woess, Lamplighters, Diestel–Leader graphs, random walks, and harmonic functions, Combinatorics, Probability & Computing14 (2005) 415-433. Zbl1066.05075MR2138121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.