Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
Sara Brofferio[1]; Wolfgang Woess
- [1] Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 6, page 1101-1123
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBrofferio, Sara, and Woess, Wolfgang. "Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 1101-1123. <http://eudml.org/doc/77880>.
@article{Brofferio2005,
affiliation = {Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)},
author = {Brofferio, Sara, Woess, Wolfgang},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {wreath product; harmonic functions},
language = {eng},
number = {6},
pages = {1101-1123},
publisher = {Elsevier},
title = {Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs},
url = {http://eudml.org/doc/77880},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Brofferio, Sara
AU - Woess, Wolfgang
TI - Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 1101
EP - 1123
LA - eng
KW - wreath product; harmonic functions
UR - http://eudml.org/doc/77880
ER -
References
top- [1] M. Barlow, Some remarks on the elliptic Harnack inequality, Bull. London Math. Soc.37 (2005) 200-208. Zbl1067.31002MR2119019
- [2] L. Bartholdi, W. Woess, Spectral computations on lamplighter groups and Diestel–Leader graphs, J. Fourier Analysis Appl.11 (2005) 175-202. Zbl1082.05058MR2131635
- [3] D. Bertacchi, Random walks on Diestel–Leader graphs, Abh. Math. Sem. Univ. Hamburg71 (2001) 205-224. Zbl0992.60052MR1873044
- [4] P. Cartier, Fonctions harmoniques sur un arbre, Symposia Math.9 (1972) 203-270. Zbl0283.31005MR353467
- [5] D.I. Cartwright, V.A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst Fourier (Grenoble)44 (1994) 1243-1288. Zbl0809.60010MR1306556
- [6] Th. Delmotte, Graphs between the elliptic and parabolic Harnack inequalities, Potential Anal.16 (2002) 151-168. Zbl1081.39012MR1881595
- [7] W. Dicks, Th. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata93 (2002) 121-137. Zbl1021.47014MR1934693
- [8] R. Diestel, I. Leader, A conjecture concerning a limit of non-Cayley graphs, J. Algebraic Combin.14 (2001) 17-25. Zbl0985.05020MR1856226
- [9] J.L. Doob, Discrete potential theory and boundaries, J. Math. Mech.8 (1959) 433-458. Zbl0101.11503MR107098
- [10] E.B. Dynkin, Boundary theory of Markov processes (the discrete case), Russian Math. Surveys24 (1969) 1-42. Zbl0222.60048MR245096
- [11] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl.2 (1961) 399-402. Zbl0214.44101
- [12] A.G. Erschler, On the asymptotics of the rate of departure to infinity, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI)283 (2001) 251-257, 263 (in Russian). Zbl1069.60043MR1879073
- [13] R.I. Grigorchuk, A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata87 (2001) 209-244. Zbl0990.60049MR1866850
- [14] A. Grigor'yan, A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann.324 (2002) 521-556. Zbl1011.60021MR1938457
- [15] W. Hebisch, L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble)51 (2001) 1437-1481. Zbl0988.58007MR1860672
- [16] G.A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math.4 (1960) 313-340. Zbl0094.32103MR123364
- [17] V.A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, in: Heyer H. (Ed.), Probability Measures on Groups X, Plenum, New York, 1991, pp. 205-238. Zbl0823.60006MR1178986
- [18] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab.11 (1983) 457-490. Zbl0641.60009MR704539
- [19] J.G. Kemeny, J.L. Snell, Finite Markov Chains, Springer, New York, 1976. Zbl0328.60035MR410929
- [20] R. Lyons, R. Pemantle, Y. Peres, Random walks on the lamplighter group, Ann. Probab.24 (1996) 1993-2006. Zbl0879.60004MR1415237
- [21] M.A. Picardello, W. Woess, Examples of stable Martin boundaries of Markov chains, in: Kishi M. (Ed.), Potential Theory, de Gruyter, Berlin, 1990, pp. 261-270. Zbl0758.60076MR1167242
- [22] C. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 293-316. Zbl0934.43001MR1714851
- [23] C. Pittet, L. Saloff-Coste, On random walks on wreath products, Ann. Probab.30 (2002) 948-977. Zbl1021.60004MR1905862
- [24] D. Revelle, Rate of escape of random walks on wreath products, Ann. Probab.31 (2003) 1917-1934. Zbl1051.60047MR2016605
- [25] D. Revelle, Heat kernel asymptotics on the lamplighter group, Electronic Comm. Probab.8 (2003) 142-154. Zbl1061.60112MR2042753
- [26] L. Saloff-Coste, W. Woess, Transition operators, groups, norms, and spectral radii, Pacific J. Math.180 (1997) 333-367. Zbl0899.60005MR1487568
- [27] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, Cambridge, 2000. Zbl0951.60002MR1743100
- [28] W. Woess, Lamplighters, Diestel–Leader graphs, random walks, and harmonic functions, Combinatorics, Probability & Computing14 (2005) 415-433. Zbl1066.05075MR2138121
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.