Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
Sara Brofferio[1]; Wolfgang Woess
- [1] Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 6, page 1101-1123
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] M. Barlow, Some remarks on the elliptic Harnack inequality, Bull. London Math. Soc.37 (2005) 200-208. Zbl1067.31002MR2119019
- [2] L. Bartholdi, W. Woess, Spectral computations on lamplighter groups and Diestel–Leader graphs, J. Fourier Analysis Appl.11 (2005) 175-202. Zbl1082.05058MR2131635
- [3] D. Bertacchi, Random walks on Diestel–Leader graphs, Abh. Math. Sem. Univ. Hamburg71 (2001) 205-224. Zbl0992.60052MR1873044
- [4] P. Cartier, Fonctions harmoniques sur un arbre, Symposia Math.9 (1972) 203-270. Zbl0283.31005MR353467
- [5] D.I. Cartwright, V.A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst Fourier (Grenoble)44 (1994) 1243-1288. Zbl0809.60010MR1306556
- [6] Th. Delmotte, Graphs between the elliptic and parabolic Harnack inequalities, Potential Anal.16 (2002) 151-168. Zbl1081.39012MR1881595
- [7] W. Dicks, Th. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata93 (2002) 121-137. Zbl1021.47014MR1934693
- [8] R. Diestel, I. Leader, A conjecture concerning a limit of non-Cayley graphs, J. Algebraic Combin.14 (2001) 17-25. Zbl0985.05020MR1856226
- [9] J.L. Doob, Discrete potential theory and boundaries, J. Math. Mech.8 (1959) 433-458. Zbl0101.11503MR107098
- [10] E.B. Dynkin, Boundary theory of Markov processes (the discrete case), Russian Math. Surveys24 (1969) 1-42. Zbl0222.60048MR245096
- [11] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl.2 (1961) 399-402. Zbl0214.44101
- [12] A.G. Erschler, On the asymptotics of the rate of departure to infinity, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI)283 (2001) 251-257, 263 (in Russian). Zbl1069.60043MR1879073
- [13] R.I. Grigorchuk, A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata87 (2001) 209-244. Zbl0990.60049MR1866850
- [14] A. Grigor'yan, A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann.324 (2002) 521-556. Zbl1011.60021MR1938457
- [15] W. Hebisch, L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble)51 (2001) 1437-1481. Zbl0988.58007MR1860672
- [16] G.A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math.4 (1960) 313-340. Zbl0094.32103MR123364
- [17] V.A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, in: Heyer H. (Ed.), Probability Measures on Groups X, Plenum, New York, 1991, pp. 205-238. Zbl0823.60006MR1178986
- [18] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab.11 (1983) 457-490. Zbl0641.60009MR704539
- [19] J.G. Kemeny, J.L. Snell, Finite Markov Chains, Springer, New York, 1976. Zbl0328.60035MR410929
- [20] R. Lyons, R. Pemantle, Y. Peres, Random walks on the lamplighter group, Ann. Probab.24 (1996) 1993-2006. Zbl0879.60004MR1415237
- [21] M.A. Picardello, W. Woess, Examples of stable Martin boundaries of Markov chains, in: Kishi M. (Ed.), Potential Theory, de Gruyter, Berlin, 1990, pp. 261-270. Zbl0758.60076MR1167242
- [22] C. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 293-316. Zbl0934.43001MR1714851
- [23] C. Pittet, L. Saloff-Coste, On random walks on wreath products, Ann. Probab.30 (2002) 948-977. Zbl1021.60004MR1905862
- [24] D. Revelle, Rate of escape of random walks on wreath products, Ann. Probab.31 (2003) 1917-1934. Zbl1051.60047MR2016605
- [25] D. Revelle, Heat kernel asymptotics on the lamplighter group, Electronic Comm. Probab.8 (2003) 142-154. Zbl1061.60112MR2042753
- [26] L. Saloff-Coste, W. Woess, Transition operators, groups, norms, and spectral radii, Pacific J. Math.180 (1997) 333-367. Zbl0899.60005MR1487568
- [27] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, Cambridge, 2000. Zbl0951.60002MR1743100
- [28] W. Woess, Lamplighters, Diestel–Leader graphs, random walks, and harmonic functions, Combinatorics, Probability & Computing14 (2005) 415-433. Zbl1066.05075MR2138121