On the relation between elliptic and parabolic Harnack inequalities
Waldemar Hebisch[1]; Laurent Saloff-Coste[2]
- [1] Wroclaw University, Institute of Mathematics, Wroclaw (Pologne)
- [2] Cornell University, Department of Mathematics, Ithaca NY (USA)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 5, page 1437-1481
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHebisch, Waldemar, and Saloff-Coste, Laurent. "On the relation between elliptic and parabolic Harnack inequalities." Annales de l’institut Fourier 51.5 (2001): 1437-1481. <http://eudml.org/doc/115954>.
@article{Hebisch2001,
abstract = {We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic
Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither
the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to
imply the parabolic Harnack inequality in question; both are necessary conditions. As an
application, we show the equivalence between parabolic Harnack inequality for $\Delta $ on
$M$, (i.e., for $\partial _t+\Delta $) and elliptic Harnack inequality for $-
\partial ^2_t+\Delta $ on $\{\mathbb \{R\}\}\times M$.},
affiliation = {Wroclaw University, Institute of Mathematics, Wroclaw (Pologne); Cornell University, Department of Mathematics, Ithaca NY (USA)},
author = {Hebisch, Waldemar, Saloff-Coste, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Laplace equation; heat equation; Harnack inequality; Dirichlet spaces; two-sided Gaussian bounds; elliptic and parabolic Harnack inequalities; Riemannian manifold},
language = {eng},
number = {5},
pages = {1437-1481},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the relation between elliptic and parabolic Harnack inequalities},
url = {http://eudml.org/doc/115954},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Hebisch, Waldemar
AU - Saloff-Coste, Laurent
TI - On the relation between elliptic and parabolic Harnack inequalities
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 5
SP - 1437
EP - 1481
AB - We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic
Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither
the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to
imply the parabolic Harnack inequality in question; both are necessary conditions. As an
application, we show the equivalence between parabolic Harnack inequality for $\Delta $ on
$M$, (i.e., for $\partial _t+\Delta $) and elliptic Harnack inequality for $-
\partial ^2_t+\Delta $ on ${\mathbb {R}}\times M$.
LA - eng
KW - Laplace equation; heat equation; Harnack inequality; Dirichlet spaces; two-sided Gaussian bounds; elliptic and parabolic Harnack inequalities; Riemannian manifold
UR - http://eudml.org/doc/115954
ER -
References
top- C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Annals of Math. 115 (1982) Zbl0503.32007MR657239
- P. Auscher, T. Coulhon, Gaussian bounds for random walks from elliptic regularity, Ann. Inst. Henri Poincaré, Prob. Stat. 35 (1999), 605-630 Zbl0933.60047MR1705682
- D. Bakry, T. Coulhon, M. Ledoux, L. Saloff-Coste, Sobolev Inequalities in Disguise, Indiana Univ. Math. J. 44 (1995), 1033-1073 Zbl0857.26006MR1386760
- M. Barlow, Diffusions on fractals, Lectures in Probability Theory and Statistics Ecole d'été de Probabilités de Saint Flour XXV-- 1995 1690 (1998), 1-121, Springer Zbl0916.60069
- M. Barlow, R. Bass, Transition densities for Brownian motion on the Sierpinski carpet, Probab. Th. Rel. Fields 91 (1992), 307-330 Zbl0739.60071MR1151799
- M. Barlow, R. Bass, Random walks on graphical Sierpinski carpets, 39 (1999), Cambridge University Press Zbl0958.60045MR1802425
- A. Bendikov, L. Saloff-Coste, On and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spaces, American J. Math. 122 (2000), 1205-1263 Zbl0969.31008MR1797661
- R. Blumental, R. Getoor, Markov Processes and Potential Theory, (1968), Academic Press, New York and London Zbl0169.49204MR264757
- G. Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger 1 (1996), 205-232, Soc. Math. France, Séminaires et Congrés Zbl0884.58088
- J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
- T. Coulhon, A. Grigor'yan, On-diagonal lower bounds for heat kernels and Markov chains, Duke Math. J. 89 (1997), 133-199 Zbl0920.58064MR1458975
- T. Coulhon, L. Saloff-Coste, Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana 11 (1995), 687-726 Zbl0845.58054MR1363211
- E.B. Davies, Heat kernels and spectral theory, (1989), Cambridge University Press Zbl0699.35006MR990239
- E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. d'Analyse Math 58 (1992), 99-119 Zbl0808.58041MR1226938
- E.B. Davies, Non-Gaussian aspects of Heat kernel behaviour, J. London Math. Soc. 55 (1997), 105-125 Zbl0879.35064MR1423289
- T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), 181-232 Zbl0922.60060MR1681641
- T. Delmotte, Elliptic and parabolic Harnack inequalities Zbl1081.39012MR1881595
- E. Fabes, D. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rat, Mech. Anal. 96 (1986), 327-338 Zbl0652.35052MR855753
- B. Franchi, C. Gutiérrez, R. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. in Partial Differential Equations 19 (1994), 523-604 Zbl0822.46032MR1265808
- M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and Symmetric Markov processes, (1994), W. de Gruyter Zbl0838.31001MR1303354
- A. Grigor'yan, The heat equation on non-compact Riemannian manifolds, 182 (1991), 55-87 Zbl0743.58031
- A. Grigor'yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geometry 45 (1997), 33-52 Zbl0865.58042MR1443330
- A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. A.M.S 36 (1999), 135-249 Zbl0927.58019MR1659871
- A. Grigor'yan, Estimates of heat kernels on Riemannian manifolds, Spectral Theory and Geometry 273 (1999), Cambridge University Press Zbl0985.58007
- A. Grigor'yan, L. Saloff-Coste, Heat kernel on connected sums of Riemannian manifolds, Mathematical Research Letters 6 (1999), 1-14 Zbl0957.58023MR1713132
- A. Grigor'yan, A. Telcs, Sub-Gaussian estimates of heat kernels on infinite graphs, (2000) Zbl1010.35016MR1853353
- M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, (1998), Birkhäuser Zbl1113.53001MR1699320
- D. Jerison, The Poincaré inequality for vector fields satisfying the Hörmander's condition, Duke Math. J. 53 (1986), 503-523 Zbl0614.35066MR850547
- N. Krylov, M. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR-Izs 16 (1981), 151-164 Zbl0464.35035
- S. Kusuoka, D. Stroock, Applications of Malliavin Calculus, Part 3, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 34 (1987), 391-442 Zbl0633.60078MR914028
- Y.T. Kuzmenko, S.A. Molchanov, Counterexamples to Liouville-type theorems, 6 (1976), 39-43 Zbl0416.35033
- P. Li, S-T Yau, On the parabolic kernel of Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
- J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591 Zbl0111.09302MR159138
- J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 16 ; 20 (1964 ; 1967), 101-134 ; 231--236 Zbl0149.06902MR159139
- J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727-740 Zbl0227.35016MR288405
- M. Safonov, Harnack's inequality for elliptic equations and the Hölder property of their solutions, J. Soviet Math. 21 (1983), 851-863 Zbl0511.35029
- L. Saloff-Coste, Analyse sur les groupes à croissance polynomiale, Ark. för Mat. 28 (1990), 315-331 Zbl0715.43009MR1084020
- L. Saloff-Coste, D. Stroock, Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal. 98 (1991), 97-121 Zbl0734.58041MR1111195
- L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992), 417-450 Zbl0735.58032MR1180389
- L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Duke Math. J., IMRN 2 (1992), 27-38 Zbl0769.58054MR1150597
- L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis 4 (1995), 429-467 Zbl0840.31006MR1354894
- L. Saloff-Coste, Aspects of Sobolev type inequalities, (2001) Zbl0991.35002MR1872526
- K-T. Sturm, On the geometry defined by Dirichlet forms, Seminar on Stochastic Processes, Random Fields and Applications, Ascona vol. 36 (1995), 231-242, Birkhäuser Zbl0834.58039
- K-T. Sturm, Analysis on local Dirichlet spaces I: Recurrence, conservativeness and -Liouville properties, J. Reine Angew. Math. 456 (1994), 173-196 Zbl0806.53041MR1301456
- K-T. Sturm, Analysis on local Dirichlet spaces II. Upper Gaussian estimates for fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), 275-312 Zbl0854.35015MR1355744
- K-T. Sturm, Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl. 75 (1996), 273-297 Zbl0854.35016MR1387522
- A. Telcs, Local sub-Gaussian estimates of heat kernels on graphs, the strongly recurrent cases, (2000)
- N. Varopoulos, Fonctions harmoniques sur les groupes de Lie, CR. Acad. Sci. Paris, Sér. I Math. 304 (1987), 519-521 Zbl0614.22002MR892879
- N. Varopoulos, Small time Gaussian estimates of the heat diffusion kernel, Part 1: the semigroup technique, Bull. Sci. Math. 113 (1989), 253-277 Zbl0703.58052MR1016211
- N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, (1993), Cambridge University Press Zbl0813.22003MR1218884
- A. Grigor'yan, Heat kernel upper bounds on a complete non-compact Riemannian manifold, Revista Mat. Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
- A. Grigor'yan, The heat equation on non-compact Riemannian manifolds, Math. USSR Sb. (Engl. Transl.) 72 (1992), 47-77 Zbl0776.58035MR1098839
- Y.T. Kuzmenko, S.A. Molchanov, Counterexamples to Liouville-type theorems, Moscow Univ. Math. Bull. (Engl. Transl.) 34 (1979), 35-39 Zbl0442.35038
Citations in EuDML Documents
top- Sara Brofferio, Wolfgang Woess, Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
- András Telcs, Random walk on graphs with regular resistance and volume growth
- Alexander Grigor'yan, Laurent Saloff-Coste, Stability results for Harnack inequalities
- Erika Battaglia, Stefano Biagi, Andrea Bonfiglioli, [unknown]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.