Berry–Esseen theorem and local limit theorem for non uniformly expanding maps

Sébastien Gouëzel

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 6, page 997-1024
  • ISSN: 0246-0203

How to cite

top

Gouëzel, Sébastien. "Berry–Esseen theorem and local limit theorem for non uniformly expanding maps." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 997-1024. <http://eudml.org/doc/77882>.

@article{Gouëzel2005,
author = {Gouëzel, Sébastien},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {6},
pages = {997-1024},
publisher = {Elsevier},
title = {Berry–Esseen theorem and local limit theorem for non uniformly expanding maps},
url = {http://eudml.org/doc/77882},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Gouëzel, Sébastien
TI - Berry–Esseen theorem and local limit theorem for non uniformly expanding maps
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 997
EP - 1024
LA - eng
UR - http://eudml.org/doc/77882
ER -

References

top
  1. [1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, 1997. Zbl0882.28013MR1450400
  2. [2] J. Aaronson, M. Denker, The Poincaré series of C Z , Ergodic Theory Dynam. Systems19 (1999) 1-20. Zbl0920.30036MR1676950
  3. [3] J. Aaronson, M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps, Stochastics and Dynamics1 (2001) 193-237. Zbl1039.37002MR1840194
  4. [4] J. Aaronson, B. Weiss, Remarks on the tightness of cocycles, Colloq. Math.8485 (2000) 363-376. Zbl0980.28010MR1784202
  5. [5] J.F. Alves, S. Luzzatto, V. Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Preprint, 2002. Zbl1134.37326
  6. [6] S. Bochner, R.S. Phillips, Absolutely convergent Fourier expansions for non-commutative normed rings, Ann. Math.43 (1942) 409-418. Zbl0060.27204MR7939
  7. [7] L. Breiman, Probability, Addison-Wesley, 1968. Zbl0174.48801MR229267
  8. [8] A. Broise, Transformations dilatantes de l'intervalle et théorèmes limites, Astérisque238 (1996) 1-109. Zbl0988.37032MR1634271
  9. [9] H. Bruin, S. Luzzatto, S. van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003) 621-646. Zbl1039.37021MR2013929
  10. [10] J.-P. Conze, S. Le Borgne, Méthode de martingales et flot géodésique sur une surface de courbure constante négative, Ergodic Theory Dynam. Systems21 (2) (2001) 421-441. Zbl0983.37034MR1827112
  11. [11] D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc.356 (2004) 1637-1689. Zbl1031.37031MR2034323
  12. [12] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley Series in Probability and Mathematical Statistics, Wiley, 1966. Zbl0219.60003MR210154
  13. [13] J. Frenk, On Banach Algebras, Renewal Measures and Regenerative Processes, CWI Tract, vol. 38, Centrum voor Wiskunde en Informatica, Amsterdam, 1987. Zbl0624.60099MR906870
  14. [14] S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields128 (2004) 82-122. Zbl1038.37007MR2027296
  15. [15] S. Gouëzel, Regularity of coboundaries for non uniformly expanding Markov maps, Preprint, 2004. Zbl1087.37005
  16. [16] S. Gouëzel, Sharp polynomial bounds for the decay of correlations, Israel J. Math.139 (2004) 29-65. Zbl1070.37003MR2041223
  17. [17] Y. Guivarc'h, J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist.24 (1988) 73-98. Zbl0649.60041MR937957
  18. [18] H. Hennion, Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc.118 (1993) 627-634. Zbl0772.60049MR1129880
  19. [19] I.A. Ibragimov, Y.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971, With a supplementary chapter by I.A. Ibragimov and V.V. Petrov. Translation from the Russian edited by J.F.C. Kingman. Zbl0219.60027MR322926
  20. [20] C.T. Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math.47 (1950) 140-147. Zbl0040.06502MR37469
  21. [21] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar.18 (1967) 217-229. Zbl0228.60012MR210177
  22. [22] S. Le Borgne, F. Pène, Décorrélation multiple pour certains systèmes quasi-hyperboliques. Applications, Preprint. Zbl1090.37018
  23. [23] C. Liverani, Central limit theorems for deterministic systems, in: International Conference on Dynamical Systems, Montevideo 1995, Pitman Research Notes in Mathematics, vol. 362, 1996. Zbl0871.58055MR1460797
  24. [24] C. Liverani, B. Saussol, S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems19 (1999) 671-685. Zbl0988.37035MR1695915
  25. [25] C.C. Moore, K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Proc. L.M.S.40 (1980) 443-475. Zbl0428.28014MR572015
  26. [26] M. Pollicott, R. Sharp, Invariance principles for interval maps with an indifferent fixed point, Comm. Math. Phys.229 (2002) 337-346. Zbl1074.37007MR1923178
  27. [27] A. Raugi, Étude d’une transformation – non uniformément hyperbolique de l’intervalle [ 0 , 1 [ , Bull. Soc. Math. France132 (2004) 81-103. Zbl1049.37018MR2075917
  28. [28] B. Rogozin, Asymptotic behavior of the coefficients in Levi–Wiener theorems on absolutely converging trigonometric series, Siberian Math. J.14 (1973) 917-923. Zbl0286.42005MR342940
  29. [29] B. Rogozin, Asymptotic behavior of the coefficients of functions of power series and Fourier series, Siberian Math. J.17 (1977) 492-498. Zbl0353.42002MR481860
  30. [30] J. Rousseau-Egele, Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab.11 (1983) 772-788. Zbl0518.60033MR704569
  31. [31] W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991. Zbl0867.46001MR1157815
  32. [32] O. Sarig, Subexponential decay of correlations, Invent. Math.150 (2002) 629-653. Zbl1042.37005MR1946554
  33. [33] D. Szász, T. Varjú, Local limit theorem for Lorentz process and its recurrence in the plane, Ergodic Theory Dynam. Systems24 (2004) 257-278. Zbl1115.37009MR2041271
  34. [34] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2)147 (1998) 585-650. Zbl0945.37009MR1637655
  35. [35] L.-S. Young, Recurrence times and rates of mixing, Israel J. Math.110 (1999) 153-188. Zbl0983.37005MR1750438
  36. [36] R. Zweimüller, Stable limits for probability preserving maps with indifferent fixed points, Stochastics and Dynamics3 (2003) 83-99. Zbl1035.37001MR1971188

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.