A class of nonstationary adic transformations
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 1, page 103-123
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMéla, Xavier. "A class of nonstationary adic transformations." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 103-123. <http://eudml.org/doc/77883>.
@article{Méla2006,
author = {Méla, Xavier},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Adic transformations; Ergodicity; Weak mixing; Loosely Bernoulli; Complexity; Binomial coefficients},
language = {eng},
number = {1},
pages = {103-123},
publisher = {Elsevier},
title = {A class of nonstationary adic transformations},
url = {http://eudml.org/doc/77883},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Méla, Xavier
TI - A class of nonstationary adic transformations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 103
EP - 123
LA - eng
KW - Adic transformations; Ergodicity; Weak mixing; Loosely Bernoulli; Complexity; Binomial coefficients
UR - http://eudml.org/doc/77883
ER -
References
top- [1] R. Bollinger, C. Burchard, Lucas's theorem and some related results for extended Pascal triangles, Amer. Math. Monthly97 (3) (1990) 198-204. Zbl0741.11014MR1048430
- [2] B.A. Bondarenko, Generalized Pascal Triangles and Pyramids, their Fractals, Graphs and Applications, Fan, Tashkent, 1990. Zbl0706.05002MR1069753
- [3] T. de la Rue, E. Janvresse, The Pascal adic transformation is loosely Bernoulli, Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 133-139. Zbl1044.28012MR2044811
- [4] J. Feldman, New K-automorphisms and a problem of Kakutani, Israel J. Math.24 (1976) 16-38. Zbl0336.28003MR409763
- [5] S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré20 (1984) 35-51. Zbl0535.28010MR740249
- [6] N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics, and Combinatorics, Lecture Notes in Math., vol. 1794, Springer-Verlag, 2002. Zbl1014.11015MR1970385
- [7] A. Hajian, Y. Ito, S. Kakutani, Invariant measures and orbits of dissipative transformations, Adv. in Math9 (1972) 52-65. Zbl0236.28010MR302860
- [8] B. Host, Substitution subshifts and Bratteli diagrams, in: Blanchard F., Maass A., Nogueira A. (Eds.), Topics in Symbolic Dynamics and Applications, London Math. Soc. Lecture Note Ser., Cambridge University Press, 1999. Zbl0985.37012MR1776755
- [9] A. Katok, Time change, monotone equivalence, and standard dynamical systems, Dokl. Akad. Nauk SSSR223 (4) (1975) 789-792, (in Russian). Zbl0326.28025MR412383
- [10] A. Katok, Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat.41 (1) (1977) 104-157, (in Russian). Zbl0372.28020MR442195
- [11] A. Katok, E. Sataev, Standardness of rearrangement automorphisms of segments and flows on surfaces, Mat. Zametki20 (4) (1976) 479-488, (in Russian). Zbl0368.58010MR430210
- [12] H. Keynes, J. Robertson, Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc.139 (1969) 359-369. Zbl0176.20602MR237748
- [13] A. Livshitz, A sufficient condition for weak mixing of substitutions and stationary adic transformations, Math. Notes44 (1988) 920-925. Zbl0713.28011
- [14] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math.1 (1878) 184-240. MR1505161JFM10.0134.05
- [15] X. Méla, Dynamical properties of the Pascal adic and related systems, Ph.D. thesis, University of North Carolina at Chapel Hill, 2002.
- [16] X. Méla, K. Petersen, Dynamical properties of the Pascal adic transformation, Ergodic Theory Dynam. Systems25 (2005) 227-256. Zbl1069.37007MR2122921
- [17] D. Ornstein, D. Rudolph, B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc.37 (1982). Zbl0504.28019MR653094
- [18] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981. Zbl0449.28016MR614142
- [19] K. Petersen, Ergodic Theory, Cambridge University Press, 1989. Zbl0676.28008MR1073173
- [20] K. Petersen, T. Adams, Binomial coefficient multiples of irrationals, Monatsh. Math.125 (4) (1998) 269-278. Zbl0956.28014MR1621682
- [21] K. Petersen, K. Schmidt, Symmetric Gibbs measures, Trans. Amer. Math. Soc.349 (7) (1997) 2775-2811. Zbl0873.28008MR1422906
- [22] B. Solomyak, On the spectral theory of adic transformations, Adv. Soviet Math.9 (1992) 217-230. Zbl0770.28012MR1166205
- [23] A. Vershik, Uniform algebraic approximation of shift and multiplicative operators, Dokl. Akad. Nauk SSSR218 (24) (1981) 526-529. Zbl0484.47005MR625756
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.