The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “One-dimensional diffusion in an asymmetric random environment”

Behavior near the extinction time in self-similar fragmentations I : the stable case

Christina Goldschmidt, Bénédicte Haas (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The stable fragmentation with index of self-similarity ∈[−1/2, 0) is derived by looking at the masses of the subtrees formed by discarding the parts of a (1+)−1–stable continuum random tree below height , for ≥0. We give a detailed limiting description of the distribution of such a fragmentation, ((), ≥0), as it approaches its time of extinction, . In particular, we show that 1/ ((−)+) converges in distribution as →0 to a non-trivial limit. In order to prove this, we go...

Invariance principles for random walks conditioned to stay positive

Francesco Caravenna, Loïc Chaumont (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let { be a random walk in the domain of attraction of a stable law 𝒴 , i.e. there exists a sequence of positive real numbers ( ) such that / converges in law to 𝒴 . Our main result is that the rescaled process ( / , ≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions,...