The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Annealed deviations of random walk in random scenery”

Averaged large deviations for random walk in a random environment

Atilla Yilmaz (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤ with ≥1, and gives a variational formula for the corresponding rate function . Under Sznitman’s transience condition (), we show that is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in...

Asymptotics for the survival probability in a killed branching random walk

Nina Gantert, Yueyun Hu, Zhan Shi (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope − , where denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when → 0, this probability decays like exp{−(+o(1)) / 1/2}, where is a positive constant...

Scaling limit of the random walk among random traps on ℤd

Jean-Christophe Mourrat (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Attributing a positive value to each ∈ℤ, we investigate a nearest-neighbour random walk which is reversible for the measure with weights ( ), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that ≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof...