Large deviation principle of occupation measure for stochastic Burgers equation

Mathieu Gourcy

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 4, page 441-459
  • ISSN: 0246-0203

How to cite

top

Gourcy, Mathieu. "Large deviation principle of occupation measure for stochastic Burgers equation." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 441-459. <http://eudml.org/doc/77942>.

@article{Gourcy2007,
author = {Gourcy, Mathieu},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic Burgers equation; large deviations; occupation measure},
language = {eng},
number = {4},
pages = {441-459},
publisher = {Elsevier},
title = {Large deviation principle of occupation measure for stochastic Burgers equation},
url = {http://eudml.org/doc/77942},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Gourcy, Mathieu
TI - Large deviation principle of occupation measure for stochastic Burgers equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 441
EP - 459
LA - eng
KW - stochastic Burgers equation; large deviations; occupation measure
UR - http://eudml.org/doc/77942
ER -

References

top
  1. [1] C. Cardon-Weber, Large deviations for a Burgers type SPDE, Stochastic Process. Appl.84 (1999) 53-70. Zbl0996.60073MR1720097
  2. [2] G. Da Prato, A. Debussche, Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton Jacobi equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl.9 (1998) 267-277. Zbl0931.37036MR1722786
  3. [3] G. Da Prato, A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl. (IV)CLXXVIII (2000) 143-174. Zbl1016.49024MR1849384
  4. [4] G. Da Prato, D. Gatarek, Stochastic Burgers equation with correlated noise, Stoch. Stoch. Rep.52 (1995) 29-41. Zbl0853.35138MR1380259
  5. [5] G. Da Prato, A. Debussche, R. Temam, Stochastic Burgers equation, Nonlinear Anal.1 (1994) 389-402. Zbl0824.35112MR1300149
  6. [6] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. Zbl0761.60052MR1207136
  7. [7] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996. Zbl0849.60052MR1417491
  8. [8] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Springer-Verlag, 1998. Zbl0896.60013MR1619036
  9. [9] A. Dermoune, Around the stochastic Burgers equation, Stoch. Anal. Appl.15 (2) (1997) 295-311. Zbl0885.60055MR1454089
  10. [10] J.D. Deuschel, D.W. Stroock, Large Deviations, Pure Appl. Math., vol. 137, Academic Press, San Diego, 1989. Zbl0705.60029MR997938
  11. [11] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I–IV, Comm. Pure Appl. Math.28 (1975) 1-47, 279–301 (1975); 29, 389–461 (1976); 36, 183–212 (1983). Zbl0323.60069
  12. [12] F. Flandoli, B. Maslowski, Ergodicity of the 2D Navier–Stokes equation under random perturbation, Comm. Math. Phys.171 (1995) 119-141. Zbl0845.35080
  13. [13] B. Goldys, B. Maslowski, Exponential ergodicity for stochastic burgers and 2D Navier–Stokes equation, J. Funct. Anal.226 (1) (2005) 230-255. Zbl1078.60049
  14. [14] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993. Zbl0925.60001MR1287609
  15. [15] E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. thesis. Université Paris XI, 1975. Zbl0236.60039
  16. [16] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, third ed., Springer-Verlag, 1999. Zbl0917.60006MR1725357
  17. [17] B.L. Rozovski, Stochastic Evolution Systems: Linear Theory and Application to Non Linear Filtering, Kluver Academic, 1990. Zbl0724.60070
  18. [18] E. Weinan, K. Khanin, A. Mazel, Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. of Math.151 (2000) 877-960. Zbl0972.35196MR1779561
  19. [19] L. Wu, Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal.172 (2000) 301-376. Zbl0957.60032MR1753178
  20. [20] L. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Proc. Appl.91 (2001) 205-238. Zbl1047.60059MR1807683
  21. [21] L. Wu, Essential spectral radius for Markov semigroups (I): discrete time case, Probab. Theory Related Fields128 (2004) 255-321. Zbl1056.60068MR2031227

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.