Loop-free Markov chains as determinantal point processes
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 1, page 19-28
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBorodin, Alexei. "Loop-free Markov chains as determinantal point processes." Annales de l'I.H.P. Probabilités et statistiques 44.1 (2008): 19-28. <http://eudml.org/doc/77961>.
@article{Borodin2008,
abstract = {We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise.},
author = {Borodin, Alexei},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov chain; determinantal point process; discrete space; correlation function; determinant; loop-free Markov process; sample path},
language = {eng},
number = {1},
pages = {19-28},
publisher = {Gauthier-Villars},
title = {Loop-free Markov chains as determinantal point processes},
url = {http://eudml.org/doc/77961},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Borodin, Alexei
TI - Loop-free Markov chains as determinantal point processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 1
SP - 19
EP - 28
AB - We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise.
LA - eng
KW - Markov chain; determinantal point process; discrete space; correlation function; determinant; loop-free Markov process; sample path
UR - http://eudml.org/doc/77961
ER -
References
top- J. Ben Hough, M. Krishnapur, Y. Peres and B. Virag. Determinantal processes and independence. Probab. Surv. 3 (2006) 206–229. Zbl1189.60101MR2216966
- A. Borodin and G. Olshanski. Distributions on partitions, point processes and the hypergeometric kernel. Comm. Math. Phys. 211 (2000) 335–358. Zbl0966.60049MR1754518
- A. Borodin and G. Olshanski. Markov processes on partitions. Probab. Theory Related Fields 135 (2006) 84–152. Zbl1105.60052MR2214152
- A. Borodin and E. Rains. Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121 (2005) 291–317. Zbl1127.82017MR2185331
- O. Costin and J. Lebowitz. Gaussian fluctuations in random matrices. Phys. Rev. Lett. 75 (1995) 69–72.
- W. Feller. An Introduction to Probability Theory and Its Applications, Volumes I and II. Wiley, 1968, 1971. , Zbl0155.23101
- K. Johansson. Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 (2002) 225–280. Zbl1008.60019MR1900323
- R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hâutes Études Sci. 98 (2003) 167–212. Zbl1055.60003MR2031202
- O. Macchi. The coincidence approach to stochastic point processes. Adv. in Appl. Probab. 7 (1975) 83–122. Zbl0366.60081MR380979
- R. Pyke. Markov renewal processes: Definitions and preliminary properties. Ann. Math. Statist. 32 (1961) 1231–1242. Zbl0267.60089MR133888
- R. Pyke. Markov renewal processes with finitely many states. Ann. Math. Statist. 32 (1961) 1243–1259. Zbl0201.49901MR154324
- A. Soshnikov. Determinantal random point fields. Russian Math. Surveys 55 (2000) 923–975. Zbl0991.60038MR1799012
- A. Soshnikov. Gaussian fluctuation of the number of particles in Airy, Bessel, sine and other determinantal random point fields. J. Stat. Phys. 100 (2000) 491–522. Zbl1041.82001MR1788476
- A. Soshnikov. Gaussian limit for determinantal random point fields. Ann. Probab. 30 (2002) 171–187. Zbl1033.60063MR1894104
- A. Soshnikov. Determinantal random fields. In Encyclopedia of Mathematical Physics (J.-P. Francoise, G. Naber and T. S. Tsun, eds), vol. 2. Elsevier, Oxford, 2006, pp. 47–53. MR2238867
- C. A. Tracy and H. Widom. Nonintersecting Brownian excursions. Ann. Appl. Probab. 17 (2007) 953–979. Zbl1124.60081MR2326237
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.