Loop-free Markov chains as determinantal point processes

Alexei Borodin

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 1, page 19-28
  • ISSN: 0246-0203

Abstract

top
We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise.

How to cite

top

Borodin, Alexei. "Loop-free Markov chains as determinantal point processes." Annales de l'I.H.P. Probabilités et statistiques 44.1 (2008): 19-28. <http://eudml.org/doc/77961>.

@article{Borodin2008,
abstract = {We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise.},
author = {Borodin, Alexei},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov chain; determinantal point process; discrete space; correlation function; determinant; loop-free Markov process; sample path},
language = {eng},
number = {1},
pages = {19-28},
publisher = {Gauthier-Villars},
title = {Loop-free Markov chains as determinantal point processes},
url = {http://eudml.org/doc/77961},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Borodin, Alexei
TI - Loop-free Markov chains as determinantal point processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 1
SP - 19
EP - 28
AB - We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise.
LA - eng
KW - Markov chain; determinantal point process; discrete space; correlation function; determinant; loop-free Markov process; sample path
UR - http://eudml.org/doc/77961
ER -

References

top
  1. J. Ben Hough, M. Krishnapur, Y. Peres and B. Virag. Determinantal processes and independence. Probab. Surv. 3 (2006) 206–229. Zbl1189.60101MR2216966
  2. A. Borodin and G. Olshanski. Distributions on partitions, point processes and the hypergeometric kernel. Comm. Math. Phys. 211 (2000) 335–358. Zbl0966.60049MR1754518
  3. A. Borodin and G. Olshanski. Markov processes on partitions. Probab. Theory Related Fields 135 (2006) 84–152. Zbl1105.60052MR2214152
  4. A. Borodin and E. Rains. Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121 (2005) 291–317. Zbl1127.82017MR2185331
  5. O. Costin and J. Lebowitz. Gaussian fluctuations in random matrices. Phys. Rev. Lett. 75 (1995) 69–72. 
  6. W. Feller. An Introduction to Probability Theory and Its Applications, Volumes I and II. Wiley, 1968, 1971. , Zbl0155.23101
  7. K. Johansson. Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 (2002) 225–280. Zbl1008.60019MR1900323
  8. R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hâutes Études Sci. 98 (2003) 167–212. Zbl1055.60003MR2031202
  9. O. Macchi. The coincidence approach to stochastic point processes. Adv. in Appl. Probab. 7 (1975) 83–122. Zbl0366.60081MR380979
  10. R. Pyke. Markov renewal processes: Definitions and preliminary properties. Ann. Math. Statist. 32 (1961) 1231–1242. Zbl0267.60089MR133888
  11. R. Pyke. Markov renewal processes with finitely many states. Ann. Math. Statist. 32 (1961) 1243–1259. Zbl0201.49901MR154324
  12. A. Soshnikov. Determinantal random point fields. Russian Math. Surveys 55 (2000) 923–975. Zbl0991.60038MR1799012
  13. A. Soshnikov. Gaussian fluctuation of the number of particles in Airy, Bessel, sine and other determinantal random point fields. J. Stat. Phys. 100 (2000) 491–522. Zbl1041.82001MR1788476
  14. A. Soshnikov. Gaussian limit for determinantal random point fields. Ann. Probab. 30 (2002) 171–187. Zbl1033.60063MR1894104
  15. A. Soshnikov. Determinantal random fields. In Encyclopedia of Mathematical Physics (J.-P. Francoise, G. Naber and T. S. Tsun, eds), vol. 2. Elsevier, Oxford, 2006, pp. 47–53. MR2238867
  16. C. A. Tracy and H. Widom. Nonintersecting Brownian excursions. Ann. Appl. Probab. 17 (2007) 953–979. Zbl1124.60081MR2326237

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.