Bounds on regeneration times and limit theorems for subgeometric Markov chains
Randal Douc; Arnaud Guillin; Eric Moulines
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 2, page 239-257
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDouc, Randal, Guillin, Arnaud, and Moulines, Eric. "Bounds on regeneration times and limit theorems for subgeometric Markov chains." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 239-257. <http://eudml.org/doc/77968>.
@article{Douc2008,
abstract = {This paper studies limit theorems for Markov chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster–Lyapunov conditions. The regeneration-split chain method and a precise control of the modulated moment of the hitting time to small sets are employed in the proof.},
author = {Douc, Randal, Guillin, Arnaud, Moulines, Eric},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic monotonicity; rates of convergence; Markov chains},
language = {eng},
number = {2},
pages = {239-257},
publisher = {Gauthier-Villars},
title = {Bounds on regeneration times and limit theorems for subgeometric Markov chains},
url = {http://eudml.org/doc/77968},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Douc, Randal
AU - Guillin, Arnaud
AU - Moulines, Eric
TI - Bounds on regeneration times and limit theorems for subgeometric Markov chains
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 239
EP - 257
AB - This paper studies limit theorems for Markov chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster–Lyapunov conditions. The regeneration-split chain method and a precise control of the modulated moment of the hitting time to small sets are employed in the proof.
LA - eng
KW - stochastic monotonicity; rates of convergence; Markov chains
UR - http://eudml.org/doc/77968
ER -
References
top- [1] E. Bolthausen. The Berry–Esseén theorem for strongly mixing Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 60 (1982) 283–289. Zbl0476.60022MR664418
- [2] X. Chen. Moderate deviations for m-dependent random variables with Banach space values. Statist. Probab. Lett. 35 (1997) 123–134. Zbl0887.60010MR1483265
- [3] X. Chen. Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139 (1999) xiv + 203. Zbl0952.60014MR1491814
- [4] S. J. M. Clémençon. Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Statist. Probab. Lett. 55 (2001) 227–238. Zbl1078.60508MR1867526
- [5] A. de Acosta. Moderate deviations for empirical measures of Markov chains: lower bounds. Ann. Probab. 25 (1997) 259–284. Zbl0877.60019MR1428509
- [6] A. de Acosta and X. Chen. Moderate deviations for empirical measures of Markov chains: upper bounds. J. Theoret. Probab. 11 (1998) 1075–1110. Zbl0924.60051MR1660920
- [7] H. Djellout and A. Guillin. Moderate deviations for Markov chains with atom. Stochastic Process. Appl. 95 (2001) 203–217. Zbl1059.60029MR1854025
- [8] R. Douc, G. Fort, E. Moulines and P. Soulier. Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 (2004) 1353–1377. Zbl1082.60062MR2071426
- [9] G. Fort and E. Moulines. V-subgeometric ergodicity for a Hastings–Metropolis algorithm. Statist. Probab. Lett. 49 (2000) 401–410. Zbl0981.60032MR1796485
- [10] D. H. Fuk and S. V. Nagaev. Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen. 16 (1971) 660–675. Zbl0259.60024MR293695
- [11] S. F. Jarner and G. O. Roberts. Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 (2002) 224–247. Zbl1012.60062MR1890063
- [12] G. Jones and J. Hobert. Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 (2001) 312–334. Zbl1127.60309MR1888447
- [13] M. Ledoux. Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré Probab. Statist. 28 (1992) 267–280. Zbl0751.60009MR1162575
- [14] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer, London, 1993. Zbl0925.60001MR1287609
- [15] E. Nummelin. General Irreducible Markov Chains and Non-Negative Operators. Cambridge University Press, 1984. Zbl0551.60066MR776608
- [16] E. Nummelin and P. Tuominen. The rate of convergence in Orey’s theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 15 (1983) 295–311. Zbl0532.60060MR711187
- [17] G. O. Roberts and R. L. Tweedie. Bounds on regeneration times and convergence rates for Markov chains. Stochastic Process. Appl. 80 (1999) 211–229. Zbl0961.60066MR1682243
- [18] P. Tuominen and R. Tweedie. Subgeometric rates of convergence of f-ergodic Markov chains. Adv. in Appl. Probab. 26 (1994) 775–798. Zbl0803.60061MR1285459
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.