On the discrepancy of Markov-normal sequences
M. B. Levin (1996)
Journal de théorie des nombres de Bordeaux
Similarity:
We construct a Markov normal sequence with a discrepancy of . The estimation of the discrepancy was previously known to be .
M. B. Levin (1996)
Journal de théorie des nombres de Bordeaux
Similarity:
We construct a Markov normal sequence with a discrepancy of . The estimation of the discrepancy was previously known to be .
Petr Kratochvíl (1983)
Aplikace matematiky
Similarity:
Let be a vector of absolute distributions of probabilities in an irreducible aperiodic homogeneous Markov chain with a finite state space. Professor Alladi Ramakrishnan conjectured the following strict inequality for norms of differences . In the paper, a necessary and sufficient condition for the validity of this inequality is proved, which may be useful in investigating the character of convergence of distributions in Markov chains.
Peter J. Bickel, Ya'acov Ritov, Tobias Rydén (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Petr Mandl (1979)
Banach Center Publications
Similarity:
Eddy Mayer-Wolf, Alexander Roitershtein, Ofer Zeitouni (2004)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
I. Koźniewska (1958)
Colloquium Mathematicae
Similarity: