Quenched law of large numbers for branching brownian motion in a random medium
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 3, page 490-518
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topEngländer, János. "Quenched law of large numbers for branching brownian motion in a random medium." Annales de l'I.H.P. Probabilités et statistiques 44.3 (2008): 490-518. <http://eudml.org/doc/77980>.
@article{Engländer2008,
abstract = {We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.},
author = {Engländer, János},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {poissonian obstacles; branching brownian motion; random environment; fecundity selection; radial speed; wavefronts in random medium; random KPP equation; Poissonian obstacles; branching Brownian motion},
language = {eng},
number = {3},
pages = {490-518},
publisher = {Gauthier-Villars},
title = {Quenched law of large numbers for branching brownian motion in a random medium},
url = {http://eudml.org/doc/77980},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Engländer, János
TI - Quenched law of large numbers for branching brownian motion in a random medium
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 490
EP - 518
AB - We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.
LA - eng
KW - poissonian obstacles; branching brownian motion; random environment; fecundity selection; radial speed; wavefronts in random medium; random KPP equation; Poissonian obstacles; branching Brownian motion
UR - http://eudml.org/doc/77980
ER -
References
top- [1] K. B. Athreya and P. E. Ney. Branching Processes. Springer, New York, 1972. (Reprinted by Dover, 2004.) Zbl0259.60002MR373040
- [2] S. Albeverio and L. V. Bogachev. Branching random walk in a catalytic medium. I. Basic equations. Positivity 4 (2000) 41–100. Zbl0953.60079MR1740207
- [3] M. van den Berg, E. Bolthausen and F. den Hollander. Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Related Fields 132 (2005) 163–202. Zbl1072.60067MR2199290
- [4] M. D. Bramson. Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978) 89–108. Zbl0373.60089MR510529
- [5] M. D. Bramson. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978) 531–581. Zbl0361.60052MR494541
- [6] C. Cosner. Personal communication.
- [7] R. S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester, 2003. Zbl1059.92051MR2191264
- [8] D. Dawson and K. Fleischmann. Catalytic and mutually catalytic super-Brownian motions. In Proceedings of the Ascona ’99 Seminar on Stochastic Analysis, Random Fields and Applications. R. C. Dalang, M. Mozzi and F. Russo (Eds) 89–110. Birkhäuser, Boston, 2002. Zbl1030.60091MR1958811
- [9] M. Donsker and S. R. S. Varadhan. Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525–565. Zbl0333.60077MR397901
- [10] E. B. Dynkin. Branching particle systems and superprocesses. Ann. Probab. 19 (1991) 1157–1194. Zbl0732.60092MR1112411
- [11] J. Engländer. On the volume of the supercritical super-Brownian sausage conditioned on survival. Stochastic Process. Appl. 88 (2000) 225–243. Zbl1045.60089MR1767846
- [12] J. Engländer and F. den Hollander. Survival asymptotics for branching Brownian motion in a Poissonian trap field. Markov Process. Related Fields 9 (2003) 363–389. Zbl1042.60063MR2028219
- [13] J. Engländer and K. Fleischmann. Extinction properties of super-Brownian motions with additional spatially dependent mass production. Stochastic Process. Appl. 88 (2000) 37–58. Zbl1046.60075MR1761691
- [14] J. Engländer and A. E. Kyprianou. Markov branching diffusions: martingales, Girsanov-type theorems and applications to the long term behaviour. Technical report. 1206, Department of Mathematics, Utrecht University, 2001, 39 pages. Available at http://www.math.uu.nl/publications.
- [15] J. Engländer and A. E. Kyprianou. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2004) 78–99. Zbl1056.60083MR2040776
- [16] J. Engländer and R. Pinsky. On the construction and support properties of measure-valued diffusions on D⊂Rd with spatially dependent branching. Ann. Probab. 27 (1999) 684–730. Zbl0979.60078MR1698955
- [17] J. Engländer and P. L. Simon. Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one. Electron. J. Differential Equations (2006) 6 pp. (electronic). Zbl1284.35186MR2198922
- [18] J. Engländer and D. Turaev. A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 (2002) 683–722. Zbl1014.60080MR1905855
- [19] J. Engländer and A. Winter. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171–185. Zbl1093.60058MR2199796
- [20] A. Etheridge, P. Pfaffelhuber and A. Wakolbinger. An approximate sampling formula under genetic hitchhiking. Ann. Appl. Probab. 16 (2006) 685–729. Zbl1115.92044MR2244430
- [21] S. N. Evans and D. Steinsaltz. Damage segregation at fissioning may increase growth rates: a superprocess model. Preprint. Zbl1122.92055
- [22] B. Fagan. Personal communication.
- [23] K. Fleischmann, C. Mueller and P. Vogt. On the large scale behavior of super-Brownian motion in three dimensions with a single point source. Preprint. Avaible at ArXiv:math.PR/0607670. Zbl1328.60213MR2404370
- [24] M. Freidlin. Functional Integration and Partial Differential Equations. Princeton University Press, 1985. Zbl0568.60057MR833742
- [25] J. W. Harris, S. C. Harris and A. E. Kyprianou. Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: one sided travelling-waves. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 125–145. Zbl1093.60059MR2196975
- [26] H. Kesten and V. Sidoravicius. Branching random walk with catalysts. Electron. J. Probab. 8 (2003) (electronic). Zbl1064.60196MR1961167
- [27] J. L. Kelley. General topology. Graduate Texts in Mathematics. Springer, New York–Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. Zbl0306.54002MR370454
- [28] A. Klenke. A review on spatial catalytic branching. Stochastic Models (Ottawa, ON, 1998) 245–263. Amer. Math. Soc., Providence, RI, 2000. Zbl0956.60096MR1765014
- [29] A. E. Kyprianou. Asymptotic radial speed of the support of supercritical branching and super-Brownian motion in Rd. Markov Process. Related Fields 11 (2005) 145–156. Zbl1076.60074MR2099406
- [30] F. Merkl and M. V. Wüthrich. Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 253–284. Zbl0996.82036MR1899454
- [31] T. Y. Lee and F. Torcaso. Wave propagation in a lattice KPP equation in random media. Ann. Probab. 26 (1998) 1179–1197. Zbl0937.60074MR1634418
- [32] R. G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, 1995. Zbl0858.31001MR1326606
- [33] R. G. Pinsky. Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 (1996) 237–267. Zbl0854.60087MR1387634
- [34] S. Sethuraman. Conditional survival distributions of Brownian trajectories in a one dimensional Poissonian environment. Stochastic Process. Appl. 103 (2003) 169–209. Zbl1075.60586MR1950763
- [35] A. Sznitman. Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998. Zbl0973.60003MR1717054
- [36] J. Xin. Front propagation in heterogeneous media. SIAM Rev. 42 (2000) 161–230 (electronic). Zbl0951.35060MR1778352
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.