Quenched law of large numbers for branching brownian motion in a random medium

János Engländer

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 3, page 490-518
  • ISSN: 0246-0203

Abstract

top
We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.

How to cite

top

Engländer, János. "Quenched law of large numbers for branching brownian motion in a random medium." Annales de l'I.H.P. Probabilités et statistiques 44.3 (2008): 490-518. <http://eudml.org/doc/77980>.

@article{Engländer2008,
abstract = {We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.},
author = {Engländer, János},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {poissonian obstacles; branching brownian motion; random environment; fecundity selection; radial speed; wavefronts in random medium; random KPP equation; Poissonian obstacles; branching Brownian motion},
language = {eng},
number = {3},
pages = {490-518},
publisher = {Gauthier-Villars},
title = {Quenched law of large numbers for branching brownian motion in a random medium},
url = {http://eudml.org/doc/77980},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Engländer, János
TI - Quenched law of large numbers for branching brownian motion in a random medium
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 490
EP - 518
AB - We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.
LA - eng
KW - poissonian obstacles; branching brownian motion; random environment; fecundity selection; radial speed; wavefronts in random medium; random KPP equation; Poissonian obstacles; branching Brownian motion
UR - http://eudml.org/doc/77980
ER -

References

top
  1. [1] K. B. Athreya and P. E. Ney. Branching Processes. Springer, New York, 1972. (Reprinted by Dover, 2004.) Zbl0259.60002MR373040
  2. [2] S. Albeverio and L. V. Bogachev. Branching random walk in a catalytic medium. I. Basic equations. Positivity 4 (2000) 41–100. Zbl0953.60079MR1740207
  3. [3] M. van den Berg, E. Bolthausen and F. den Hollander. Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Related Fields 132 (2005) 163–202. Zbl1072.60067MR2199290
  4. [4] M. D. Bramson. Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978) 89–108. Zbl0373.60089MR510529
  5. [5] M. D. Bramson. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978) 531–581. Zbl0361.60052MR494541
  6. [6] C. Cosner. Personal communication. 
  7. [7] R. S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester, 2003. Zbl1059.92051MR2191264
  8. [8] D. Dawson and K. Fleischmann. Catalytic and mutually catalytic super-Brownian motions. In Proceedings of the Ascona ’99 Seminar on Stochastic Analysis, Random Fields and Applications. R. C. Dalang, M. Mozzi and F. Russo (Eds) 89–110. Birkhäuser, Boston, 2002. Zbl1030.60091MR1958811
  9. [9] M. Donsker and S. R. S. Varadhan. Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525–565. Zbl0333.60077MR397901
  10. [10] E. B. Dynkin. Branching particle systems and superprocesses. Ann. Probab. 19 (1991) 1157–1194. Zbl0732.60092MR1112411
  11. [11] J. Engländer. On the volume of the supercritical super-Brownian sausage conditioned on survival. Stochastic Process. Appl. 88 (2000) 225–243. Zbl1045.60089MR1767846
  12. [12] J. Engländer and F. den Hollander. Survival asymptotics for branching Brownian motion in a Poissonian trap field. Markov Process. Related Fields 9 (2003) 363–389. Zbl1042.60063MR2028219
  13. [13] J. Engländer and K. Fleischmann. Extinction properties of super-Brownian motions with additional spatially dependent mass production. Stochastic Process. Appl. 88 (2000) 37–58. Zbl1046.60075MR1761691
  14. [14] J. Engländer and A. E. Kyprianou. Markov branching diffusions: martingales, Girsanov-type theorems and applications to the long term behaviour. Technical report. 1206, Department of Mathematics, Utrecht University, 2001, 39 pages. Available at http://www.math.uu.nl/publications. 
  15. [15] J. Engländer and A. E. Kyprianou. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2004) 78–99. Zbl1056.60083MR2040776
  16. [16] J. Engländer and R. Pinsky. On the construction and support properties of measure-valued diffusions on D⊂Rd with spatially dependent branching. Ann. Probab. 27 (1999) 684–730. Zbl0979.60078MR1698955
  17. [17] J. Engländer and P. L. Simon. Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one. Electron. J. Differential Equations (2006) 6 pp. (electronic). Zbl1284.35186MR2198922
  18. [18] J. Engländer and D. Turaev. A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 (2002) 683–722. Zbl1014.60080MR1905855
  19. [19] J. Engländer and A. Winter. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171–185. Zbl1093.60058MR2199796
  20. [20] A. Etheridge, P. Pfaffelhuber and A. Wakolbinger. An approximate sampling formula under genetic hitchhiking. Ann. Appl. Probab. 16 (2006) 685–729. Zbl1115.92044MR2244430
  21. [21] S. N. Evans and D. Steinsaltz. Damage segregation at fissioning may increase growth rates: a superprocess model. Preprint. Zbl1122.92055
  22. [22] B. Fagan. Personal communication. 
  23. [23] K. Fleischmann, C. Mueller and P. Vogt. On the large scale behavior of super-Brownian motion in three dimensions with a single point source. Preprint. Avaible at ArXiv:math.PR/0607670. Zbl1328.60213MR2404370
  24. [24] M. Freidlin. Functional Integration and Partial Differential Equations. Princeton University Press, 1985. Zbl0568.60057MR833742
  25. [25] J. W. Harris, S. C. Harris and A. E. Kyprianou. Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: one sided travelling-waves. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 125–145. Zbl1093.60059MR2196975
  26. [26] H. Kesten and V. Sidoravicius. Branching random walk with catalysts. Electron. J. Probab. 8 (2003) (electronic). Zbl1064.60196MR1961167
  27. [27] J. L. Kelley. General topology. Graduate Texts in Mathematics. Springer, New York–Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. Zbl0306.54002MR370454
  28. [28] A. Klenke. A review on spatial catalytic branching. Stochastic Models (Ottawa, ON, 1998) 245–263. Amer. Math. Soc., Providence, RI, 2000. Zbl0956.60096MR1765014
  29. [29] A. E. Kyprianou. Asymptotic radial speed of the support of supercritical branching and super-Brownian motion in Rd. Markov Process. Related Fields 11 (2005) 145–156. Zbl1076.60074MR2099406
  30. [30] F. Merkl and M. V. Wüthrich. Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 253–284. Zbl0996.82036MR1899454
  31. [31] T. Y. Lee and F. Torcaso. Wave propagation in a lattice KPP equation in random media. Ann. Probab. 26 (1998) 1179–1197. Zbl0937.60074MR1634418
  32. [32] R. G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, 1995. Zbl0858.31001MR1326606
  33. [33] R. G. Pinsky. Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 (1996) 237–267. Zbl0854.60087MR1387634
  34. [34] S. Sethuraman. Conditional survival distributions of Brownian trajectories in a one dimensional Poissonian environment. Stochastic Process. Appl. 103 (2003) 169–209. Zbl1075.60586MR1950763
  35. [35] A. Sznitman. Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998. Zbl0973.60003MR1717054
  36. [36] J. Xin. Front propagation in heterogeneous media. SIAM Rev. 42 (2000) 161–230 (electronic). Zbl0951.35060MR1778352

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.