Law of large numbers for a class of superdiffusions

János Engländer; Anita Winter

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 2, page 171-185
  • ISSN: 0246-0203

How to cite

top

Engländer, János, and Winter, Anita. "Law of large numbers for a class of superdiffusions." Annales de l'I.H.P. Probabilités et statistiques 42.2 (2006): 171-185. <http://eudml.org/doc/77891>.

@article{Engländer2006,
author = {Engländer, János, Winter, Anita},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Super-Brownian motion; Superprocess; -transform; Weighted superprocesses; Scaling limit; Local extinction; Local survival},
language = {eng},
number = {2},
pages = {171-185},
publisher = {Elsevier},
title = {Law of large numbers for a class of superdiffusions},
url = {http://eudml.org/doc/77891},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Engländer, János
AU - Winter, Anita
TI - Law of large numbers for a class of superdiffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 2
SP - 171
EP - 185
LA - eng
KW - Super-Brownian motion; Superprocess; -transform; Weighted superprocesses; Scaling limit; Local extinction; Local survival
UR - http://eudml.org/doc/77891
ER -

References

top
  1. [1] I. Chavel, L. Karp, Large time behavior of the heat kernel: the parabolic λ-potential alternative, Comment. Math. Helv.66 (1991) 541-556. Zbl0754.58039
  2. [2] D.A. Dawson, Measure-valued Markov processes, in: Hennequin P.L. (Ed.), École d'été de probabilités de Saint Flour XXI, 1991, Lecture Notes in Math., vol. 1541, Springer-Verlag, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
  3. [3] P. Donnelly, T.G. Kurtz, Particle representations for measure-valued population models, Ann. Probab.27 (1) (1999) 166-205. Zbl0956.60081MR1681126
  4. [4] E.B. Dynkin, Branching particle systems and superprocesses, Ann. Probab.19 (3) (1991) 1157-1194. Zbl0732.60092MR1112411
  5. [5] E.B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ., vol. 50, Amer. Math. Soc., Providence, RI, 2002. Zbl0999.60003MR1883198
  6. [6] J. Engländer, An example and a conjecture concerning scaling limits of superdiffusions, Statist. Probab. Lett.66 (3) (2004) 363-368. Zbl1102.60071MR2045481
  7. [7] J. Engländer, R.G. Pinsky, On the construction and support properties of measure-valued diffusions on D R d with spatially dependent branching, Ann. Probab.27 (2) (1999) 684-730. Zbl0979.60078
  8. [8] J. Engländer, R.G. Pinsky, Uniqueness/nonuniqueness for positive solutions to semilinear equations of the form u t = L u + V u - γ u P in R n , J. Differential Equations192 (2) (2003) 396-428. Zbl1081.35050
  9. [9] J. Engländer, D. Turaev, A scaling limit theorem for a class of superdiffusions, Ann. Probab.30 (2) (2002) 683-722. Zbl1014.60080MR1905855
  10. [10] A. Etheridge, An Introduction to Superprocesses, University Lecture Series, vol. 20, Amer. Math. Soc., Providence, RI, 2000. Zbl0971.60053MR1779100
  11. [11] K. Fleischmann, J. Swart, Extinction versus exponential growth in a supercritical super-Wright–Fisher diffusion, Stochastic Process. Appl.106 (1) (2003) 141-165. Zbl1075.60567MR1983047
  12. [12] J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains, Springer-Verlag, 1976. Zbl0348.60090MR407981
  13. [13] L. Overbeck, Some aspects of the Martin boundary of measure-valued diffusions, in: Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, Amer. Math. Soc., Providence, RI, 1994, pp. 179-186. Zbl0806.60037MR1278293
  14. [14] Y. Pinchover, Large time behavior of the heat kernel, J. Functional Anal.206 (1) (2004) 191-209. Zbl1037.58019MR2024351
  15. [15] R.G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. Zbl0858.31001MR1326606
  16. [16] R.G. Pinsky, Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions, Ann. Probab.24 (1) (1996) 237-267. Zbl0854.60087MR1387634
  17. [17] B. Simon, Large time behavior of the heat kernel: on a theorem of Chavel and Karp, Proc. Amer. Math. Soc.118 (2) (1993) 513-514. Zbl0789.58075MR1139473
  18. [18] S. Watanabe, Limit theorems for a class of branching processes, in: Chover J. (Ed.), Markov Processes and Potential Theory, Wiley, New York, 1967, pp. 205-232. Zbl0253.60072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.