Law of large numbers for a class of superdiffusions
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 2, page 171-185
- ISSN: 0246-0203
Access Full Article
topHow to cite
topEngländer, János, and Winter, Anita. "Law of large numbers for a class of superdiffusions." Annales de l'I.H.P. Probabilités et statistiques 42.2 (2006): 171-185. <http://eudml.org/doc/77891>.
@article{Engländer2006,
author = {Engländer, János, Winter, Anita},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Super-Brownian motion; Superprocess; -transform; Weighted superprocesses; Scaling limit; Local extinction; Local survival},
language = {eng},
number = {2},
pages = {171-185},
publisher = {Elsevier},
title = {Law of large numbers for a class of superdiffusions},
url = {http://eudml.org/doc/77891},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Engländer, János
AU - Winter, Anita
TI - Law of large numbers for a class of superdiffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 2
SP - 171
EP - 185
LA - eng
KW - Super-Brownian motion; Superprocess; -transform; Weighted superprocesses; Scaling limit; Local extinction; Local survival
UR - http://eudml.org/doc/77891
ER -
References
top- [1] I. Chavel, L. Karp, Large time behavior of the heat kernel: the parabolic λ-potential alternative, Comment. Math. Helv.66 (1991) 541-556. Zbl0754.58039
- [2] D.A. Dawson, Measure-valued Markov processes, in: Hennequin P.L. (Ed.), École d'été de probabilités de Saint Flour XXI, 1991, Lecture Notes in Math., vol. 1541, Springer-Verlag, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
- [3] P. Donnelly, T.G. Kurtz, Particle representations for measure-valued population models, Ann. Probab.27 (1) (1999) 166-205. Zbl0956.60081MR1681126
- [4] E.B. Dynkin, Branching particle systems and superprocesses, Ann. Probab.19 (3) (1991) 1157-1194. Zbl0732.60092MR1112411
- [5] E.B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ., vol. 50, Amer. Math. Soc., Providence, RI, 2002. Zbl0999.60003MR1883198
- [6] J. Engländer, An example and a conjecture concerning scaling limits of superdiffusions, Statist. Probab. Lett.66 (3) (2004) 363-368. Zbl1102.60071MR2045481
- [7] J. Engländer, R.G. Pinsky, On the construction and support properties of measure-valued diffusions on with spatially dependent branching, Ann. Probab.27 (2) (1999) 684-730. Zbl0979.60078
- [8] J. Engländer, R.G. Pinsky, Uniqueness/nonuniqueness for positive solutions to semilinear equations of the form in , J. Differential Equations192 (2) (2003) 396-428. Zbl1081.35050
- [9] J. Engländer, D. Turaev, A scaling limit theorem for a class of superdiffusions, Ann. Probab.30 (2) (2002) 683-722. Zbl1014.60080MR1905855
- [10] A. Etheridge, An Introduction to Superprocesses, University Lecture Series, vol. 20, Amer. Math. Soc., Providence, RI, 2000. Zbl0971.60053MR1779100
- [11] K. Fleischmann, J. Swart, Extinction versus exponential growth in a supercritical super-Wright–Fisher diffusion, Stochastic Process. Appl.106 (1) (2003) 141-165. Zbl1075.60567MR1983047
- [12] J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains, Springer-Verlag, 1976. Zbl0348.60090MR407981
- [13] L. Overbeck, Some aspects of the Martin boundary of measure-valued diffusions, in: Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, Amer. Math. Soc., Providence, RI, 1994, pp. 179-186. Zbl0806.60037MR1278293
- [14] Y. Pinchover, Large time behavior of the heat kernel, J. Functional Anal.206 (1) (2004) 191-209. Zbl1037.58019MR2024351
- [15] R.G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. Zbl0858.31001MR1326606
- [16] R.G. Pinsky, Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions, Ann. Probab.24 (1) (1996) 237-267. Zbl0854.60087MR1387634
- [17] B. Simon, Large time behavior of the heat kernel: on a theorem of Chavel and Karp, Proc. Amer. Math. Soc.118 (2) (1993) 513-514. Zbl0789.58075MR1139473
- [18] S. Watanabe, Limit theorems for a class of branching processes, in: Chover J. (Ed.), Markov Processes and Potential Theory, Wiley, New York, 1967, pp. 205-232. Zbl0253.60072
Citations in EuDML Documents
top- János Engländer, Law of large numbers for superdiffusions : the non-ergodic case
- János Engländer, Quenched law of large numbers for branching brownian motion in a random medium
- János Engländer, Simon C. Harris, Andreas E. Kyprianou, Strong law of large numbers for branching diffusions
- S. C. Harris, R. Knobloch, A. E. Kyprianou, Strong law of large numbers for fragmentation processes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.