Homogenization of a singular random one-dimensional PDE
Bogdan Iftimie; Étienne Pardoux; Andrey Piatnitski
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 3, page 519-543
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topIftimie, Bogdan, Pardoux, Étienne, and Piatnitski, Andrey. "Homogenization of a singular random one-dimensional PDE." Annales de l'I.H.P. Probabilités et statistiques 44.3 (2008): 519-543. <http://eudml.org/doc/77981>.
@article{Iftimie2008,
abstract = {This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.},
author = {Iftimie, Bogdan, Pardoux, Étienne, Piatnitski, Andrey},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic homogenization; random operators; random limit dynamics; convergence; random mixing coefficients},
language = {eng},
number = {3},
pages = {519-543},
publisher = {Gauthier-Villars},
title = {Homogenization of a singular random one-dimensional PDE},
url = {http://eudml.org/doc/77981},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Iftimie, Bogdan
AU - Pardoux, Étienne
AU - Piatnitski, Andrey
TI - Homogenization of a singular random one-dimensional PDE
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 519
EP - 543
AB - This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.
LA - eng
KW - stochastic homogenization; random operators; random limit dynamics; convergence; random mixing coefficients
UR - http://eudml.org/doc/77981
ER -
References
top- [1] A. Bensoussan, J.-L. Lions and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
- [2] P. Billingsley. Convergence of Probability Measures, Wiley, 1968. Zbl0172.21201MR233396
- [3] P. Billingsley. Probability and Measures, 3d edition. Wiley, 1995. Zbl0822.60002MR1324786
- [4] F. Campillo, M. Kleptsyna and A. Piatnitski. Homogenization of random parabolic operator with large potential. Stochastic Process. Appl. 93 (2001) 57–85. Zbl1099.35009MR1819484
- [5] M. Diop, B. Iftimie, É. Pardoux and A. Piatnitski. Singular homogenization with stationary in time and periodic in space coefficients. J. Funct. Anal. 231 (2006) 1–46. Zbl1113.35015MR2190162
- [6] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Willey, New York, 1986. Zbl0592.60049MR838085
- [7] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. De Gruyter, 1994. Zbl0838.31001MR1303354
- [8] A. Gegout-Petit and É. Pardoux. Equations différentielles stochastiques retrogrades réfléchies dans un convexe. Stochastics Stochastic Rep. 57 ( 1996) 111–128. Zbl0891.60050MR1407950
- [9] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, 1991. Zbl0734.60060MR1121940
- [10] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, 1990. Zbl0743.60052MR1070361
- [11] A. Lejay. Méthodes probabilistes pour l’homogénéisation des opérateurs sous forme divergence. Thèse, Université de Provence, 2000.
- [12] D. Nualart. Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 1996. Zbl0837.60050
- [13] D. Nualart and É. Pardoux, Stochastic calculus with anticipative integrands, Probab. Theory Related Fields 78 (1988) 535–581. Zbl0629.60061MR950346
- [14] É. Pardoux and A. Piatnitski. Homogenization of a nonlinear random parabolic PDE. Stochastics Process. Appl. 104 (2003) 1–27. Zbl1075.35003MR1956470
- [15] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, 1991. Zbl0731.60002MR1083357
- [16] D. W. Stroock. Diffusion semigroups corresponding to uniformly elliptic divergence form operator. In Séminaire de Probabilités XXII. Lectures Notes in Math. 1321 pp. 316–347. Springer, 1988. Zbl0651.47031MR960535
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.