Homogenization of a singular random one-dimensional PDE

Bogdan Iftimie; Étienne Pardoux; Andrey Piatnitski

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 3, page 519-543
  • ISSN: 0246-0203

Abstract

top
This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.

How to cite

top

Iftimie, Bogdan, Pardoux, Étienne, and Piatnitski, Andrey. "Homogenization of a singular random one-dimensional PDE." Annales de l'I.H.P. Probabilités et statistiques 44.3 (2008): 519-543. <http://eudml.org/doc/77981>.

@article{Iftimie2008,
abstract = {This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.},
author = {Iftimie, Bogdan, Pardoux, Étienne, Piatnitski, Andrey},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic homogenization; random operators; random limit dynamics; convergence; random mixing coefficients},
language = {eng},
number = {3},
pages = {519-543},
publisher = {Gauthier-Villars},
title = {Homogenization of a singular random one-dimensional PDE},
url = {http://eudml.org/doc/77981},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Iftimie, Bogdan
AU - Pardoux, Étienne
AU - Piatnitski, Andrey
TI - Homogenization of a singular random one-dimensional PDE
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 519
EP - 543
AB - This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.
LA - eng
KW - stochastic homogenization; random operators; random limit dynamics; convergence; random mixing coefficients
UR - http://eudml.org/doc/77981
ER -

References

top
  1. [1] A. Bensoussan, J.-L. Lions and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  2. [2] P. Billingsley. Convergence of Probability Measures, Wiley, 1968. Zbl0172.21201MR233396
  3. [3] P. Billingsley. Probability and Measures, 3d edition. Wiley, 1995. Zbl0822.60002MR1324786
  4. [4] F. Campillo, M. Kleptsyna and A. Piatnitski. Homogenization of random parabolic operator with large potential. Stochastic Process. Appl. 93 (2001) 57–85. Zbl1099.35009MR1819484
  5. [5] M. Diop, B. Iftimie, É. Pardoux and A. Piatnitski. Singular homogenization with stationary in time and periodic in space coefficients. J. Funct. Anal. 231 (2006) 1–46. Zbl1113.35015MR2190162
  6. [6] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Willey, New York, 1986. Zbl0592.60049MR838085
  7. [7] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. De Gruyter, 1994. Zbl0838.31001MR1303354
  8. [8] A. Gegout-Petit and É. Pardoux. Equations différentielles stochastiques retrogrades réfléchies dans un convexe. Stochastics Stochastic Rep. 57 ( 1996) 111–128. Zbl0891.60050MR1407950
  9. [9] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, 1991. Zbl0734.60060MR1121940
  10. [10] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, 1990. Zbl0743.60052MR1070361
  11. [11] A. Lejay. Méthodes probabilistes pour l’homogénéisation des opérateurs sous forme divergence. Thèse, Université de Provence, 2000. 
  12. [12] D. Nualart. Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 1996. Zbl0837.60050
  13. [13] D. Nualart and É. Pardoux, Stochastic calculus with anticipative integrands, Probab. Theory Related Fields 78 (1988) 535–581. Zbl0629.60061MR950346
  14. [14] É. Pardoux and A. Piatnitski. Homogenization of a nonlinear random parabolic PDE. Stochastics Process. Appl. 104 (2003) 1–27. Zbl1075.35003MR1956470
  15. [15] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, 1991. Zbl0731.60002MR1083357
  16. [16] D. W. Stroock. Diffusion semigroups corresponding to uniformly elliptic divergence form operator. In Séminaire de Probabilités XXII. Lectures Notes in Math. 1321 pp. 316–347. Springer, 1988. Zbl0651.47031MR960535

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.