Exponential concentration for first passage percolation through modified Poincaré inequalities
Michel Benaïm; Raphaël Rossignol
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 3, page 544-573
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Société Mathématique de France, Paris, 2000. Zbl0982.46026MR1845806
- [2] J. Baik, P. Deift and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999) 1119–1178. Zbl0932.05001MR1682248
- [3] D. Bakry. Functional inequalities for Markov semigroups. In Probability Measures on Groups: Recent Directions and Trends. Tota Inst. Fund Res., Mumbai, 91–147. Zbl1148.60057MR2213477
- [4] M. Benaim and R. Rossignol. A modified Poincaré inequality and its application to first passage percolation, 2006. Available at http://arxiv.org/abs/math.PR/0602496. Zbl1186.60102
- [5] I. Benjamini, G. Kalai and O. Schramm. First passage percolation has sublinear distance variance. Ann. Probab. 31 (2003) 1970–1978. Zbl1087.60070MR2016607
- [6] S. Boucheron, O. Bousquet, G. Lugosi and P. Massart. Moment inequalities for functions of independent random variables. Ann. Probab. 33 (2005) 514–560. Zbl1074.60018MR2123200
- [7] S. Boucheron, G. Lugosi and P. Massart. Concentration inequalities using the entropy method. Ann. Probab. 31 (2003) 1583–1614. Zbl1051.60020MR1989444
- [8] M. Émery and J. Yukich. A simple proof of the logarithmic Sobolev inequality on the circle. Séminaire de probabilités de Strasbourg 21 (1987) 173–175. Zbl0616.46023MR941981
- [9] D. Falik and A. Samorodnitsky. Edge-isoperimetric inequalities and influences. Combin. Probab. Comput. 16 (2007) 693–712. Zbl1134.05309MR2346808
- [10] J. M. Hammersley and D. J. A. Welsh. First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. 61–110. Springer, New York, 1965. Zbl0143.40402MR198576
- [11] G. H. Hardy, J. E. Littlewood and G. Pólya. Inequalities. Cambridge University Press, 1934. Zbl0010.10703JFM60.0169.01
- [12] C. D. Howard. Models of first-passage percolation. In Encyclopaedia Math. Sci. 125–173. Springer, Berlin, 2004. Zbl1206.82048MR2023652
- [13] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437–476. Zbl0969.15008MR1737991
- [14] K. Johansson. Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Related Fields 116 (2000) 445–456. Zbl0960.60097MR1757595
- [15] H. Kesten. Aspects of first passage percolation. In Ecole d’été de probabilité de Saint-Flour XIV—1984 125–264. Lecture Notes in Math. 1180. Springer, Berlin, 1986. Zbl0602.60098MR876084
- [16] H. Kesten. On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993) 296–338. Zbl0783.60103MR1221154
- [17] M. Ledoux. On Talagrand’s deviation inequalities for product measures. ESAIM P&S 1 (1996) 63–87. Zbl0869.60013MR1399224
- [18] M. Ledoux. The Concentration of Measure Phenomenon. Amer. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
- [19] M. Ledoux. Deviation inequalities on largest eigenvalues. In Summer School on the Connections between Probability and Geometric Functional Analysis, 14–19 June 2005. To appear, 2005. Available at http://www.lsp.ups-tlse.fr/Ledoux/Jerusalem.pdf. Zbl1130.15012MR2349607
- [20] L. Miclo. Sur l’inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. In Séminaire de Probabilités de Strasbourg, 36 (2002) 222–229. Zbl1053.60014MR1971588
- [21] R. Rossignol. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality. Ann. Probab. 35 (2006) 1707–1725. Zbl1115.60021MR2271478
- [22] L. Saloff-Coste. Lectures on finite Markov chains. In Ecole d’été de probabilité de Saint-Flour XXVI 301–413. P. Bernard (Ed.). Springer, New York, 1997. Zbl0885.60061MR1490046
- [23] M. Talagrand. On Russo’s approximate zero–one law. Ann. Probab. 22 (1994) 1576–1587. Zbl0819.28002MR1303654
- [24] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 (1995) 73–205. Zbl0864.60013MR1361756
- [25] M. Talagrand. New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505–563. Zbl0893.60001MR1419006
- [26] M. Talagrand. A new look at independence. Ann. Probab. 24 (1996) 1–34. Zbl0858.60019MR1387624
- [27] K. Yosida. Functional Analysis, 6th edition. Springer-Verlag, Berlin, 1980. MR617913