A simple proof of the logarithmic Sobolev inequality on the circle

Michel Émery; Joseph E. Yukich

Séminaire de probabilités de Strasbourg (1987)

  • Volume: 21, page 173-175

How to cite

top

Émery, Michel, and Yukich, Joseph E.. "A simple proof of the logarithmic Sobolev inequality on the circle." Séminaire de probabilités de Strasbourg 21 (1987): 173-175. <http://eudml.org/doc/113588>.

@article{Émery1987,
author = {Émery, Michel, Yukich, Joseph E.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {hypercontractivity; expectation; logarithmic Sobolev inequality; variational method; Brownian motion semi-group},
language = {fre},
pages = {173-175},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A simple proof of the logarithmic Sobolev inequality on the circle},
url = {http://eudml.org/doc/113588},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Émery, Michel
AU - Yukich, Joseph E.
TI - A simple proof of the logarithmic Sobolev inequality on the circle
JO - Séminaire de probabilités de Strasbourg
PY - 1987
PB - Springer - Lecture Notes in Mathematics
VL - 21
SP - 173
EP - 175
LA - fre
KW - hypercontractivity; expectation; logarithmic Sobolev inequality; variational method; Brownian motion semi-group
UR - http://eudml.org/doc/113588
ER -

References

top
  1. 1. Bakry, D. and M. Emery (1985) Diffusions hypercontractives, Lecture Notes in Mathematics, no. 1123, pp. 177-206. Zbl0561.60080MR889476
  2. 2. Gross, L.. (1975) Logarithmic Sobolev inequalities, Amer. J. Math., 97, pp. 1061-1083. Zbl0318.46049MR420249
  3. 3. Rothaus, O.S. (1980) Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Functional Analysis, 39, pp. 42-56. Zbl0472.47024MR593787
  4. 4. Rothaus, O.S.. (1981) Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Functional Analysis, 42, pp. 102-109. Zbl0471.58027MR620581
  5. 5. Weissler, F.B.. (1980) Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Functional Analysis, 37, pp. 218-234. Zbl0463.46024MR578933

NotesEmbed ?

top

You must be logged in to post comments.