Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 4, page 771-786
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLoukianova, D., and Loukianov, O.. "Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions." Annales de l'I.H.P. Probabilités et statistiques 44.4 (2008): 771-786. <http://eudml.org/doc/77991>.
@article{Loukianova2008,
abstract = {Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach to the problem of non-parametric kernel drift estimation in the one-dimensional recurrent case. As a particular example we obtain the rate of convergence of the Nadaraya–Watson estimator in the case of a locally Hölder-continuous drift.},
author = {Loukianova, D., Loukianov, O.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Harris recurrence; diffusion processes; limit theorems; additive functionals; non-parametric estimation; Nadaraya–Watson estimator; rate of convergence; Nadaraya-Watson estimator},
language = {eng},
number = {4},
pages = {771-786},
publisher = {Gauthier-Villars},
title = {Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions},
url = {http://eudml.org/doc/77991},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Loukianova, D.
AU - Loukianov, O.
TI - Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 4
SP - 771
EP - 786
AB - Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach to the problem of non-parametric kernel drift estimation in the one-dimensional recurrent case. As a particular example we obtain the rate of convergence of the Nadaraya–Watson estimator in the case of a locally Hölder-continuous drift.
LA - eng
KW - Harris recurrence; diffusion processes; limit theorems; additive functionals; non-parametric estimation; Nadaraya–Watson estimator; rate of convergence; Nadaraya-Watson estimator
UR - http://eudml.org/doc/77991
ER -
References
top- [1] A. Borodin and P. Salminen. Handbook of Brownian Motion – Facts and Formulae. Probability and its Applications. Birkhäuser, Basel, 1996. Zbl0859.60001MR1477407
- [2] M. Brancovan. Fonctionnelles additives spéciales des processus récurrents au sens de Harris. Z. Wahrsch. Verw. Gebiete 47 (1979) 163–194. Zbl0381.60065MR523168
- [3] X. Chen. How often does a Harris recurrent Markov chain recur? Ann. Probab. 27 (1999) 1324–1346. Zbl0981.60023MR1733150
- [4] A. Dalalyan. Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Statist. 33 (2005) 2507–2528. Zbl1084.62079MR2253093
- [5] A. Dalalyan and Y. Kutoyants. On second order minimax estimation of the invariant density for ergodic diffusions. Statist. Decisions 22 (2004) 17–41. Zbl1057.62066MR2065989
- [6] S. Delattre and M. Hoffmann. Asymptotic equivalence for a null recurrent diffusion model. Bernoulli 8 (2002) 139–174. Zbl1040.60067MR1895888
- [7] S. Delattre, M. Hoffmann and M. Kessler. Dynamics adaptive estimation of a scalar diffusion. Prépublication PMA-762, Univ. Paris 6. Available at www.proba.jussieu.fr/mathdoc/preprints/.
- [8] L. Galtchouk and S. Pergamentchikov. Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes. Math. Methods Statist. 10 (2001) 316–330. Zbl1005.62070MR1867163
- [9] R. Höpfner and Y. Kutoyants. On a problem of statistical inference in null recurrent diffusions. Stat. Inference Stoch. Process. 6 (2003) 25–42. Zbl1012.62091MR1965183
- [10] R. Höpfner and E. Löcherbach. Limit Theorems for Null Recurrent Markov Processes. Providence, RI, 2003. Zbl1018.60074MR1949295
- [11] K. Itô and H. P. McKean, Jr.Diffusion Processes and Their Sample Paths. Springer, Berlin, 1974. Zbl0285.60063MR345224
- [12] R. Khasminskii. Limit distributions of some integral functionals for null-recurrent diffusions. Stochastic Process. Appl. 92 (2001) 1–9. Zbl1047.60078MR1815176
- [13] K. Kuratowski. Introduction a la theorie des ensembles et a la topologie. Institut de Mathematiques, Universite Geneve, 1966. Zbl0136.19002MR231338
- [14] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. Zbl1038.62073MR2144185
- [15] E. Löcherbach and D. Loukianova. On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multidimensional diffusions. To appear in Stochastic Process. Appl. Zbl1202.60122
- [16] D. Loukianova and O. Loukianov. Deterministic equivalents of additive functionals of recurrent diffusions and drift estimation. To appear in Stat. Inference Stoch. Process. Zbl1204.60032
- [17] D. Loukianova and O. Loukianov. Almost sure rate of convergence of maximum likelihood estimators for multidimensional diffusions. In Dependence in Probability and Statistics 269–347. Springer, New York, 2006. Zbl1102.62086MR2283262
- [18] Y. Nishiyama. A maximum inequality for continuous martingales and M-estimation in Gaussian white noise model. Ann. Statist. 27 (1999) 675–696. Zbl0954.62100MR1714712
- [19] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1994. Zbl0804.60001MR1303781
- [20] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 2, Wiley, New York, 1990. Zbl0826.60002MR921238
- [21] A. Touati. Théorèmes limites pour les processus de Markov récurrents. Unpublished paper, 1988. (See also C.R.A.S. Paris Série I 305 (1987) 841–844.) Zbl0627.60069MR923211
- [22] H. van Zanten. On empirical processes for ergodic diffusions and rates of convergence of M-estimators. Scand. J. Statist. 30 (2003) 443–458. Zbl1034.62071MR2002221
- [23] H. van Zanten. On the rate of convergence of the maximum likelihood estimator in Brownian semimartingale models. Bernoulli 11 (2005) 643–664. Zbl1092.62079MR2158254
- [24] N. Yoshida. Asymptotic behavior of M-estimators and related random field for diffusion process. Ann. Inst. Statist. Math. 42 (1990) 221–251. Zbl0723.62048MR1064786
Citations in EuDML Documents
top- Eva Löcherbach, Dasha Loukianova, Oleg Loukianov, Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
- Eva Löcherbach, Dasha Loukianova, Oleg Loukianov, Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.