A lattice gas model for the incompressible Navier–Stokes equation

J. Beltrán; C. Landim

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 5, page 886-914
  • ISSN: 0246-0203

Abstract

top
We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.

How to cite

top

Beltrán, J., and Landim, C.. "A lattice gas model for the incompressible Navier–Stokes equation." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 886-914. <http://eudml.org/doc/77996>.

@article{Beltrán2008,
abstract = {We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.},
author = {Beltrán, J., Landim, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle systems; hydrodynamic limit; incompressible Navier-Stokes equation; Navier-Stokes equation; stochastic lattice gas; asymmetric exclusion process; collision process; long range jumps; relative entropy method; random dynamics generator; spectral gap},
language = {eng},
number = {5},
pages = {886-914},
publisher = {Gauthier-Villars},
title = {A lattice gas model for the incompressible Navier–Stokes equation},
url = {http://eudml.org/doc/77996},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Beltrán, J.
AU - Landim, C.
TI - A lattice gas model for the incompressible Navier–Stokes equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 886
EP - 914
AB - We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.
LA - eng
KW - interacting particle systems; hydrodynamic limit; incompressible Navier-Stokes equation; Navier-Stokes equation; stochastic lattice gas; asymmetric exclusion process; collision process; long range jumps; relative entropy method; random dynamics generator; spectral gap
UR - http://eudml.org/doc/77996
ER -

References

top
  1. [1] R. Esposito, R. Marra and H. T. Yau. Diffusive limit of asymmetric simple exclusion. Rev. Math. Phys. 6 (1994) 1233–1267. Zbl0841.60082MR1301374
  2. [2] R. Esposito, R. Marra and H. T. Yau. Navier–Stokes equations for stochastic particle systems on the lattice. Comm. Math. Phys. 182 (1996) 395–456. Zbl0868.60079MR1447299
  3. [3] C. Kipnis and C. Landim. Scaling Limit of Interacting Particle Systems. Fundamental Principles of Mathematical Sciences 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
  4. [4] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. Zbl0322.60042MR388499
  5. [5] J. Quastel. Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. XLV (1992) 623–679. Zbl0769.60097MR1162368
  6. [6] S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions II. In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals. Pitman Res. Notes Math. Ser. 283 K. Elworthy and N. Ikeda (Eds), 75–128. Longman Sci. Tech., Harlow, 1993. Zbl0793.60105MR1354152
  7. [7] H. T. Yau. Relative entropy and hydrodynamics of Ginsburg–Landau models. Lett. Math. Phys. 22 (1991) 63–80. Zbl0725.60120MR1121850

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.