A lattice gas model for the incompressible Navier–Stokes equation
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 5, page 886-914
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBeltrán, J., and Landim, C.. "A lattice gas model for the incompressible Navier–Stokes equation." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 886-914. <http://eudml.org/doc/77996>.
@article{Beltrán2008,
abstract = {We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.},
author = {Beltrán, J., Landim, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle systems; hydrodynamic limit; incompressible Navier-Stokes equation; Navier-Stokes equation; stochastic lattice gas; asymmetric exclusion process; collision process; long range jumps; relative entropy method; random dynamics generator; spectral gap},
language = {eng},
number = {5},
pages = {886-914},
publisher = {Gauthier-Villars},
title = {A lattice gas model for the incompressible Navier–Stokes equation},
url = {http://eudml.org/doc/77996},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Beltrán, J.
AU - Landim, C.
TI - A lattice gas model for the incompressible Navier–Stokes equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 886
EP - 914
AB - We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.
LA - eng
KW - interacting particle systems; hydrodynamic limit; incompressible Navier-Stokes equation; Navier-Stokes equation; stochastic lattice gas; asymmetric exclusion process; collision process; long range jumps; relative entropy method; random dynamics generator; spectral gap
UR - http://eudml.org/doc/77996
ER -
References
top- [1] R. Esposito, R. Marra and H. T. Yau. Diffusive limit of asymmetric simple exclusion. Rev. Math. Phys. 6 (1994) 1233–1267. Zbl0841.60082MR1301374
- [2] R. Esposito, R. Marra and H. T. Yau. Navier–Stokes equations for stochastic particle systems on the lattice. Comm. Math. Phys. 182 (1996) 395–456. Zbl0868.60079MR1447299
- [3] C. Kipnis and C. Landim. Scaling Limit of Interacting Particle Systems. Fundamental Principles of Mathematical Sciences 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
- [4] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. Zbl0322.60042MR388499
- [5] J. Quastel. Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. XLV (1992) 623–679. Zbl0769.60097MR1162368
- [6] S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions II. In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals. Pitman Res. Notes Math. Ser. 283 K. Elworthy and N. Ikeda (Eds), 75–128. Longman Sci. Tech., Harlow, 1993. Zbl0793.60105MR1354152
- [7] H. T. Yau. Relative entropy and hydrodynamics of Ginsburg–Landau models. Lett. Math. Phys. 22 (1991) 63–80. Zbl0725.60120MR1121850
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.