On suprema of Lévy processes and application in risk theory

Renming Song; Zoran Vondraček

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 5, page 977-986
  • ISSN: 0246-0203

Abstract

top
Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.

How to cite

top

Song, Renming, and Vondraček, Zoran. "On suprema of Lévy processes and application in risk theory." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 977-986. <http://eudml.org/doc/78000>.

@article{Song2008,
abstract = {Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.},
author = {Song, Renming, Vondraček, Zoran},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy process; subordinator; fluctuation theory; extrema; risk theory},
language = {eng},
number = {5},
pages = {977-986},
publisher = {Gauthier-Villars},
title = {On suprema of Lévy processes and application in risk theory},
url = {http://eudml.org/doc/78000},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Song, Renming
AU - Vondraček, Zoran
TI - On suprema of Lévy processes and application in risk theory
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 977
EP - 986
AB - Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.
LA - eng
KW - Lévy process; subordinator; fluctuation theory; extrema; risk theory
UR - http://eudml.org/doc/78000
ER -

References

top
  1. [1] J. Bertoin. Lévy Processes. Cambridge Univ. Press, 1996. Zbl0861.60003MR1406564
  2. [2] J. Bertoin. Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121 (1997) 345–354. Zbl0883.60069MR1465812
  3. [3] J. Bertoin. Regenerative embedding of Markov sets. Probab. Theory Related Fields 108 (1997) 559–571. Zbl0895.60011MR1465642
  4. [4] M. Huzak, M. Perman, H. Šikić and Z. Vondraček. Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Probab. 14 (2004) 1378–1397. Zbl1061.60075MR2071427
  5. [5] M. Huzak, M. Perman, H. Šikić and Z. Vondraček. Ruin probabilities for competing claim processes. J. Appl. Probab. 41 (2004) 679–690. Zbl1065.60100MR2074816
  6. [6] C. Klüppelberg, A. Kyprianou and R. Maller. Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Probab. 14 (2004) 1766–1801. Zbl1066.60049MR2099651
  7. [7] C. Klüppelberg and A. Kyprianou. On extreme ruinous behaviour of Lévy insurance risk processes. J. Appl. Probab. 43 (2006) 594–598. Zbl1118.60071MR2248586
  8. [8] A. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl1104.60001MR2250061
  9. [9] V. Vigon. Votre Lévy rampe-t-il? J. London Math. Soc. (2) 65 (2002) 243–256. Zbl1016.60054MR1875147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.