A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces
Yuri Bakhtin; Matilde Martánez
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 6, page 1078-1089
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBakhtin, Yuri, and Martánez, Matilde. "A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1078-1089. <http://eudml.org/doc/78003>.
@article{Bakhtin2008,
abstract = {$\mathcal \{L\}$ denotes a (compact, nonsingular) lamination by hyperbolic Riemann surfaces. We prove that a probability measure on $\mathcal \{L\}$ is harmonic if and only if it is the projection of a measure on the unit tangent bundle $T^\{1\}\mathcal \{L\}$ of $\mathcal \{L\}$ which is invariant under both the geodesic and the horocycle flows.},
author = {Bakhtin, Yuri, Martánez, Matilde},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {foliated spaces; harmonic measures; brownian motion on the hyperbolic plane; geodesic flow; horocycle flow; Brownian motion on the hyperbolic plane},
language = {eng},
number = {6},
pages = {1078-1089},
publisher = {Gauthier-Villars},
title = {A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces},
url = {http://eudml.org/doc/78003},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Bakhtin, Yuri
AU - Martánez, Matilde
TI - A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1078
EP - 1089
AB - $\mathcal {L}$ denotes a (compact, nonsingular) lamination by hyperbolic Riemann surfaces. We prove that a probability measure on $\mathcal {L}$ is harmonic if and only if it is the projection of a measure on the unit tangent bundle $T^{1}\mathcal {L}$ of $\mathcal {L}$ which is invariant under both the geodesic and the horocycle flows.
LA - eng
KW - foliated spaces; harmonic measures; brownian motion on the hyperbolic plane; geodesic flow; horocycle flow; Brownian motion on the hyperbolic plane
UR - http://eudml.org/doc/78003
ER -
References
top- [1] C. Bonatti and X. Gómez-Mont. Sur le comportement statistique des feuilles de certains feuilletages holomorphes. Essays on geometry and related topics, Vol. 1, 2. Monogr. Enseign. Math. 38 15–41. Enseignement Math., Geneva, 2001. Zbl1010.37025MR1929320
- [2] C. Bonatti, X. Gómez-Mont and R. Vila-Feyer. The foliated geodesic flow on Riccati equations, 2001. Preprint. MR1929320
- [3] A. Candel. Uniformization of surface laminations. Ann. Sci. École Norm. Sup. (4) 26 (1993) 489–516. Zbl0785.57009MR1235439
- [4] A. Candel. The harmonic measures of Lucy Garnett. Adv. Math. 176 (2003) 187–247. Zbl1031.58003MR1982882
- [5] I. Chavel. Eigenvalues in Riemannian Geometry. Academic Press Inc., Orlando, FL, 1984 (including a chapter by Burton Randol, with an appendix by Jozef Dodziuk). Zbl0551.53001MR768584
- [6] B. Deroin and V. Kleptsyn. Random conformal dynamical systems. Geom. Funct. Anal. (2006). To appear. Zbl1143.37008MR2373011
- [7] L. Garnett. Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51 (1983) 285–311. Zbl0524.58026MR703080
- [8] M. Heins. Selected Topics in the Classical Theory of Functions of a Complex Variable. Holt, Rinehart and Winston, New York, 1962. MR162913
- [9] K. Itô and H. P. McKean, Jr.Diffusion Processes and Their Sample Paths. Springer, Berlin, 1974 (second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125). Zbl0285.60063MR345224
- [10] P. Jiménez. Un subconjunto particular de la variedad de representaciones n-dimensional Rn(Gg). Thesis, Centro de Investigación en Matemáticas, A.C., 2006.
- [11] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York, 1988. Zbl0638.60065MR917065
- [12] A. Manning. Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature. Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) 71–91. Oxford Sci. Publ., Oxford Univ. Press, New York, 1991. Zbl0753.58023MR1130173
- [13] P. March. Brownian motion and harmonic functions on rotationally symmetric manifolds. Ann. Probab. 14 (1986) 793–801. Zbl0593.60078MR841584
- [14] M. Martínez. Measures on hyperbolic surface laminations. Ergodic Theory Dynam. Systems 26 (2006) 847–867. Zbl1107.37027MR2237474
- [15] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [16] H. Thorisson. Coupling, Stationarity, and Regeneration. Springer, New York, 2000. Zbl0949.60007MR1741181
- [17] R. J. Zimmer. Ergodic Theory and Semisimple Groups. Birkhäuser, Basel, 1984. Zbl0571.58015MR776417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.