Uniformization of surface laminations

Alberto Candel

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 4, page 489-516
  • ISSN: 0012-9593

How to cite

top

Candel, Alberto. "Uniformization of surface laminations." Annales scientifiques de l'École Normale Supérieure 26.4 (1993): 489-516. <http://eudml.org/doc/82347>.

@article{Candel1993,
author = {Candel, Alberto},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {lamination; foliation; Riemann surface; Riemannian metric; curvature},
language = {eng},
number = {4},
pages = {489-516},
publisher = {Elsevier},
title = {Uniformization of surface laminations},
url = {http://eudml.org/doc/82347},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Candel, Alberto
TI - Uniformization of surface laminations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 4
SP - 489
EP - 516
LA - eng
KW - lamination; foliation; Riemann surface; Riemannian metric; curvature
UR - http://eudml.org/doc/82347
ER -

References

top
  1. [1] L. AHLFORS and L. BERS, Riemann's Mapping Theorem for Variable Metrics, Annals of Math., Vol. 72, 1960, p. 385-404. Zbl0104.29902MR22 #5813
  2. [2] R. BRODY, Compact Manifolds and Hyperbolicity, Trans. Amer. Math. Soc., Vol. 235, 1978, p. 213-219. Zbl0416.32013MR57 #10010
  3. [3] G. CAIRNS and E. GHYS, Totally Geodesic Foliations of Four-Manifolds, J. Differential Geom., Vol. 23, 1986, p. 241-254. Zbl0601.53027MR87m:53043
  4. [4] J. CANTWELL and L. CONLON, Leafwise Hyperbolicity of Proper Foliations. Comment. Math. Helv., Vol. 64, 1989, p. 329-337. A correction. Ibid., Vol. 66, 1991, p. 319-321. Zbl0768.57013MR90f:57035
  5. [5] A. CONNES, Sur la théorie non-commutative de l'intégration, Algèbres d'Opérateurs. Lecture Notes in Math., Vol. 725, p. 19-143. Springer-Verlag, New York, 1979. Zbl0412.46053MR81g:46090
  6. [6] C. EARLE and A. SCHATZ, Teichmüller Theory for Surfaces with Boundary. J. Differential Geom., Vol. 4, 1970, p. 169-185. Zbl0194.52802MR43 #2737b
  7. [7] D. EPSTEIN, K. MILLETT and D. TISCHLER, Leaves Without Holonomy. J. London Math. Soc., Vol. 16, 1977, p. 548-552. Zbl0381.57007MR57 #4193
  8. [8] L. GARNETT, Foliations, the Ergodic Theorem and Brownian Motion. J. of Funct. Anal., Vol. 51, 1983, p. 285-311. Zbl0524.58026MR84j:58099
  9. [9] E. GHYS, Gauss-Bonnet Theorem for 2-Dimensional Foliations. J. of Funct. Anal., Vol. 77, 1988, p. 51-59. Zbl0656.57017MR89d:57040
  10. [10] S. GOODMAN and J. PLANTE, Holonomy and Averaging in Foliated Sets. J. Differential Geom., Vol. 14, 1979, p. 401-407. Zbl0475.57007MR81m:57020
  11. [11] C. MOORE and C. SCHOCHET, Global Analysis of Foliated Spaces. Springer-Verlag, New York, 1988. Zbl0648.58034MR89h:58184
  12. [12] A. PHILLIPS and D. SULLIVAN, Geometry of Leaves. Topology, Vol. 20, 1981, p. 209-218. Zbl0454.57016MR82f:57021
  13. [13] J. PLANTE, Foliations with Measure Preserving Holonomy. Annals of Math., Vol. 105, 1975, p. 327-361. Zbl0314.57018MR52 #11947
  14. [14] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées. Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
  15. [15] D. RUELLE and D. SULLIVAN, Currents, Flows and Diffeomorphisms. Topology, Vol. 14, 1975, p. 319-327. Zbl0321.58019MR54 #3759
  16. [16] D. SULLIVAN, Cycles for the Dynamical Study of Foliated Manifolds and Complex Manifolds, Invent. Math., Vol. 36, 1976, p. 225-255. Zbl0335.57015MR55 #6440
  17. [17] D. SULLIVAN, Bounds, Quadratic Differentials, and Renormalization Conjectures. Mathematics into the 21st Century. Vol. 2. American Mathematical Society Centennial Publications, Providence, 1991. Zbl0936.37016
  18. [18] A. VERJOVSKY, A Uniformization Theorem for Holomorphic Foliations. Contemp. Math., Vol. 58, III, 1987, p. 233-253. Zbl0619.32017MR88h:57027

Citations in EuDML Documents

top
  1. Yuri Bakhtin, Matilde Martánez, A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces
  2. Małgorzata Stawiska, On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits
  3. Alberto Candel, X. Gómez-Mont, Uniformization of the leaves of a rational vector field
  4. Marco Brunella, Feuilletages holomorphes sur les surfaces complexes compactes
  5. Eric Bedford, John Smillie, Polynomial diffeomorphisms of C 2 : VII. Hyperbolicity and external rays
  6. Bertrand Deroin, Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive
  7. Paweł Walczak, Losing Hausdorff dimension while generating pseudogroups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.