Determinantal transition kernels for some interacting particles on the line
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 6, page 1162-1172
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDieker, A. B., and Warren, J.. "Determinantal transition kernels for some interacting particles on the line." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1162-1172. <http://eudml.org/doc/78007>.
@article{Dieker2008,
abstract = {We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.},
author = {Dieker, A. B., Warren, J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle system; intertwining; Karlin–McGregor theorem; Markov transition kernel; Robinson–Schensted–Knuth correspondence; Schütz theorem; stochastic recursion; symmetric functions; Karlin-McGregor theorem; Robinson-Schensted-Knuth correspondence},
language = {eng},
number = {6},
pages = {1162-1172},
publisher = {Gauthier-Villars},
title = {Determinantal transition kernels for some interacting particles on the line},
url = {http://eudml.org/doc/78007},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Dieker, A. B.
AU - Warren, J.
TI - Determinantal transition kernels for some interacting particles on the line
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1162
EP - 1172
AB - We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.
LA - eng
KW - interacting particle system; intertwining; Karlin–McGregor theorem; Markov transition kernel; Robinson–Schensted–Knuth correspondence; Schütz theorem; stochastic recursion; symmetric functions; Karlin-McGregor theorem; Robinson-Schensted-Knuth correspondence
UR - http://eudml.org/doc/78007
ER -
References
top- [1] M. Alimohammadi, V. Karimipour and M. Khorrami. Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57 (1998) 6370–6376. MR1628226
- [2] Yu. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2001) 256–274. Zbl0980.60042MR1818248
- [3] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths I: PushASEP. Available at arXiv.org/abs/0707. 2813, 2007. MR2438811
- [4] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. Zbl1136.82028MR2363389
- [5] A. B. Dieker and J. Warren. Transition probabilities for series Jackson networks. Preprint, 2007. Zbl1219.60076
- [6] M. Draief, J. Mairesse and N. O’Connell. Queues, stores, and tableaux. J. Appl. Probab. 42 (2005) 1145–1167. Zbl1255.90040MR2203829
- [7] W. Fulton. Young Tableaux. Cambridge University Press, 1997. Zbl0878.14034MR1464693
- [8] E. R. Gansner. Matrix correspondences of plane partitions. Pacific J. Math. 92 (1981) 295–315. Zbl0432.05010MR618067
- [9] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437–476. Zbl0969.15008MR1737991
- [10] K. Johansson. A multi-dimensional Markov chain and the Meixner ensemble. Available at arXiv.org/abs/0707.0098, 2007. Zbl1197.60072
- [11] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385–447. Zbl1189.60024MR2203677
- [12] N. O’Connell. Conditioned random walks and the RSK correspondence. J. Phys. A 36 (2003) 3049–3066. Zbl1035.05097MR1986407
- [13] N. O’Connell. A path-transformation for random walks and the Robinson–Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003) 3669–3697. Zbl1031.05132MR1990168
- [14] A. M. Povolotsky and V. B. Priezzhev. Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. (2006) P07002. Zbl1274.82038
- [15] A. Rákos and G. Schütz. Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118 (2005) 511–530. Zbl1126.82330MR2123646
- [16] A. Rákos and G. Schütz. Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Related Fields 12 (2006) 323–334. Zbl1136.82350MR2249635
- [17] G. M. Schütz. Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88 (1997) 427–445. Zbl0945.82508MR1468391
- [18] T. Seppäläinen. Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26 (1998) 1232–1250. Zbl0935.60093MR1640344
- [19] R. P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University Press, 1997. Zbl0889.05001MR1442260
- [20] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, 1999. Zbl0928.05001MR1676282
- [21] C. A. Tracy and H. Widom. Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 (2008) 815–844. Zbl1148.60080MR2386729
- [22] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573–590. Zbl1127.60078MR2299928
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.