Determinantal transition kernels for some interacting particles on the line
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 6, page 1162-1172
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Alimohammadi, V. Karimipour and M. Khorrami. Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57 (1998) 6370–6376. MR1628226
- [2] Yu. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2001) 256–274. Zbl0980.60042MR1818248
- [3] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths I: PushASEP. Available at arXiv.org/abs/0707. 2813, 2007. MR2438811
- [4] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. Zbl1136.82028MR2363389
- [5] A. B. Dieker and J. Warren. Transition probabilities for series Jackson networks. Preprint, 2007. Zbl1219.60076
- [6] M. Draief, J. Mairesse and N. O’Connell. Queues, stores, and tableaux. J. Appl. Probab. 42 (2005) 1145–1167. Zbl1255.90040MR2203829
- [7] W. Fulton. Young Tableaux. Cambridge University Press, 1997. Zbl0878.14034MR1464693
- [8] E. R. Gansner. Matrix correspondences of plane partitions. Pacific J. Math. 92 (1981) 295–315. Zbl0432.05010MR618067
- [9] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437–476. Zbl0969.15008MR1737991
- [10] K. Johansson. A multi-dimensional Markov chain and the Meixner ensemble. Available at arXiv.org/abs/0707.0098, 2007. Zbl1197.60072
- [11] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385–447. Zbl1189.60024MR2203677
- [12] N. O’Connell. Conditioned random walks and the RSK correspondence. J. Phys. A 36 (2003) 3049–3066. Zbl1035.05097MR1986407
- [13] N. O’Connell. A path-transformation for random walks and the Robinson–Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003) 3669–3697. Zbl1031.05132MR1990168
- [14] A. M. Povolotsky and V. B. Priezzhev. Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. (2006) P07002. Zbl1274.82038
- [15] A. Rákos and G. Schütz. Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118 (2005) 511–530. Zbl1126.82330MR2123646
- [16] A. Rákos and G. Schütz. Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Related Fields 12 (2006) 323–334. Zbl1136.82350MR2249635
- [17] G. M. Schütz. Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88 (1997) 427–445. Zbl0945.82508MR1468391
- [18] T. Seppäläinen. Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26 (1998) 1232–1250. Zbl0935.60093MR1640344
- [19] R. P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University Press, 1997. Zbl0889.05001MR1442260
- [20] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, 1999. Zbl0928.05001MR1676282
- [21] C. A. Tracy and H. Widom. Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 (2008) 815–844. Zbl1148.60080MR2386729
- [22] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573–590. Zbl1127.60078MR2299928