Determinantal transition kernels for some interacting particles on the line

A. B. Dieker; J. Warren

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 6, page 1162-1172
  • ISSN: 0246-0203

Abstract

top
We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.

How to cite

top

Dieker, A. B., and Warren, J.. "Determinantal transition kernels for some interacting particles on the line." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1162-1172. <http://eudml.org/doc/78007>.

@article{Dieker2008,
abstract = {We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.},
author = {Dieker, A. B., Warren, J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle system; intertwining; Karlin–McGregor theorem; Markov transition kernel; Robinson–Schensted–Knuth correspondence; Schütz theorem; stochastic recursion; symmetric functions; Karlin-McGregor theorem; Robinson-Schensted-Knuth correspondence},
language = {eng},
number = {6},
pages = {1162-1172},
publisher = {Gauthier-Villars},
title = {Determinantal transition kernels for some interacting particles on the line},
url = {http://eudml.org/doc/78007},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Dieker, A. B.
AU - Warren, J.
TI - Determinantal transition kernels for some interacting particles on the line
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1162
EP - 1172
AB - We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.
LA - eng
KW - interacting particle system; intertwining; Karlin–McGregor theorem; Markov transition kernel; Robinson–Schensted–Knuth correspondence; Schütz theorem; stochastic recursion; symmetric functions; Karlin-McGregor theorem; Robinson-Schensted-Knuth correspondence
UR - http://eudml.org/doc/78007
ER -

References

top
  1. [1] M. Alimohammadi, V. Karimipour and M. Khorrami. Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57 (1998) 6370–6376. MR1628226
  2. [2] Yu. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2001) 256–274. Zbl0980.60042MR1818248
  3. [3] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths I: PushASEP. Available at arXiv.org/abs/0707. 2813, 2007. MR2438811
  4. [4] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. Zbl1136.82028MR2363389
  5. [5] A. B. Dieker and J. Warren. Transition probabilities for series Jackson networks. Preprint, 2007. Zbl1219.60076
  6. [6] M. Draief, J. Mairesse and N. O’Connell. Queues, stores, and tableaux. J. Appl. Probab. 42 (2005) 1145–1167. Zbl1255.90040MR2203829
  7. [7] W. Fulton. Young Tableaux. Cambridge University Press, 1997. Zbl0878.14034MR1464693
  8. [8] E. R. Gansner. Matrix correspondences of plane partitions. Pacific J. Math. 92 (1981) 295–315. Zbl0432.05010MR618067
  9. [9] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437–476. Zbl0969.15008MR1737991
  10. [10] K. Johansson. A multi-dimensional Markov chain and the Meixner ensemble. Available at arXiv.org/abs/0707.0098, 2007. Zbl1197.60072
  11. [11] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385–447. Zbl1189.60024MR2203677
  12. [12] N. O’Connell. Conditioned random walks and the RSK correspondence. J. Phys. A 36 (2003) 3049–3066. Zbl1035.05097MR1986407
  13. [13] N. O’Connell. A path-transformation for random walks and the Robinson–Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003) 3669–3697. Zbl1031.05132MR1990168
  14. [14] A. M. Povolotsky and V. B. Priezzhev. Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. (2006) P07002. Zbl1274.82038
  15. [15] A. Rákos and G. Schütz. Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118 (2005) 511–530. Zbl1126.82330MR2123646
  16. [16] A. Rákos and G. Schütz. Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Related Fields 12 (2006) 323–334. Zbl1136.82350MR2249635
  17. [17] G. M. Schütz. Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88 (1997) 427–445. Zbl0945.82508MR1468391
  18. [18] T. Seppäläinen. Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26 (1998) 1232–1250. Zbl0935.60093MR1640344
  19. [19] R. P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University Press, 1997. Zbl0889.05001MR1442260
  20. [20] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, 1999. Zbl0928.05001MR1676282
  21. [21] C. A. Tracy and H. Widom. Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 (2008) 815–844. Zbl1148.60080MR2386729
  22. [22] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573–590. Zbl1127.60078MR2299928

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.