Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree

David Croydon

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 6, page 987-1019
  • ISSN: 0246-0203

Abstract

top
In this article it is shown that the brownian motion on the continuum random tree is the scaling limit of the simple random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the brownian excursion as n→∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random walks on the trees generated by the Galton–Watson branching process, conditioned on the total population size.

How to cite

top

Croydon, David. "Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 987-1019. <http://eudml.org/doc/78009>.

@article{Croydon2008,
abstract = {In this article it is shown that the brownian motion on the continuum random tree is the scaling limit of the simple random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the brownian excursion as n→∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random walks on the trees generated by the Galton–Watson branching process, conditioned on the total population size.},
author = {Croydon, David},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {continuum random tree; brownian motion; random graph tree; random walk; scaling limit; Brownian motion},
language = {eng},
number = {6},
pages = {987-1019},
publisher = {Gauthier-Villars},
title = {Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree},
url = {http://eudml.org/doc/78009},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Croydon, David
TI - Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 987
EP - 1019
AB - In this article it is shown that the brownian motion on the continuum random tree is the scaling limit of the simple random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the brownian excursion as n→∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random walks on the trees generated by the Galton–Watson branching process, conditioned on the total population size.
LA - eng
KW - continuum random tree; brownian motion; random graph tree; random walk; scaling limit; Brownian motion
UR - http://eudml.org/doc/78009
ER -

References

top
  1. [1] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1991) 1–28. Zbl0722.60013MR1085326
  2. [2] D. Aldous. The continuum random tree. II. An overview. In Stochastic Analysis (Durham, 1990) 23–70. London Math. Soc. Lecture Note Ser. 167. Cambridge Univ. Press, 1991. Zbl0791.60008MR1166406
  3. [3] D. Aldous. The continuum random tree. III. Ann. Probab. 21 (1993) 248–289. Zbl0791.60009MR1207226
  4. [4] M. T. Barlow. Diffusions on fractals. Lectures on Probability Theory and Statistics (Saint-Flour, 1995) 1–121. Lecture Notes in Math. 1690. Springer, Berlin, 1998. Zbl0916.60069MR1668115
  5. [5] M. T. Barlow and T. Kumagai. Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50 (2006) 33–65 (electronic). Zbl1110.60090MR2247823
  6. [6] P. Billingsley. Probability and Measure, 3rd edition. Wiley, New York, 1995. Zbl0822.60002MR1324786
  7. [7] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0944.60003MR1700749
  8. [8] A. N. Borodin. The asymptotic behavior of local times of recurrent random walks with finite variance. Teor. Veroyatnost. i Primenen. 26 (1981) 769–783. Zbl0474.60056MR636771
  9. [9] D. A. Croydon. Volume growth and heat kernel estimates for the continuum random tree. Probab. Theory Related Fields. To appear. DOI: 10.1007/S00440-007-0063-4. Zbl1133.62066MR2357676
  10. [10] R. M. Dudley. Sample functions of the Gaussian process. Ann. Probab. 1 (1973) 66–103. Zbl0261.60033MR346884
  11. [11] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 (2005) 553–603. Zbl1070.60076MR2147221
  12. [12] S. N. Evans, J. Pitman and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 (2006) 81–126. Zbl1086.60050MR2221786
  13. [13] M. Fukushima, Y. Ōshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter & Co., Berlin, 1994. Zbl0838.31001MR1303354
  14. [14] A. Greven, P. Pfaffelhuber and A. Winter. Convergence in distribution of random metric measure spaces (λ-coalescent measure trees). Preprint. Available at http://arxiv.org/abs/math/0609801. Zbl1215.05161MR2520129
  15. [15] T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys. 41 (2000) 1244–1293. Zbl0977.82022MR1757958
  16. [16] S. Janson and J.-F. Marckert. Convergence of discrete snakes. J. Theoret. Probab. 18 (2005) 615–647. Zbl1084.60049MR2167644
  17. [17] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. Zbl0996.60001MR1876169
  18. [18] H. Kesten. Sub-diffusive behavior of random walk on a random cluster. Unpublished proof. Zbl0632.60106
  19. [19] H. Kesten. Sub-diffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 425–487. Zbl0632.60106MR871905
  20. [20] J. Kigami. Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal. 128 (1995) 48–86. Zbl0820.60060MR1317710
  21. [21] J. Kigami. Analysis on Fractals. Cambridge Univ. Press, 2001. Zbl0998.28004MR1840042
  22. [22] W. B. Krebs. Brownian motion on the continuum tree. Probab. Theory Related Fields 101 (1995) 421–433. Zbl0822.60069MR1324094
  23. [23] T. Kumagai. Heat kernel estimates and parabolic Harnack inequalities on graphs and resistance forms. Publ. Res. Inst. Math. Sci. 40 (2004) 793–818. Zbl1067.60070MR2074701
  24. [24] M. B. Marcus and J. Rosen. Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. Ann. Probab. 20 (1992) 1603–1684. Zbl0762.60068MR1188037
  25. [25] P. Révész. Local time and invariance. Analytical Methods in Probability Theory (Oberwolfach, 1980) 128–145. Lecture Notes in Math. 861. Springer, Berlin, 1981. Zbl0456.60029MR655268
  26. [26] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999. Zbl0917.60006MR1725357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.